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ABSTRACT

This paper addresses the problem of target detection and lo-
calization by radar or active sonar systems. A novel config-
uration in which the transmitted signals are spatially coded,
is proposed. The main advantages of this new configuration
are: avoid beam-shape loss, larger virtual array aperture
and therefore narrower beams, increase the angular resolu-
tion, and ability to detect and localize greater number of
targets. This configuration enables array processing in the
transmit mode in addition to the receive mode. The gen-
eralized likelihood ratio test (GLRT) and the maximum-
likelihood (ML) estimator are derived for target detection
and localization according to the new model configuration.
The performance of the array processing algorithms for this
problem is studied theoretically and via simulations.

1. INTRODUCTION

In conventional active systems for target detection and lo-
calization, such as radars or active sonars, a directional sig-
nal is usually transmitted, and the target echo signal is
processed. In the recent years many array processing tech-
niques have been developed for target detection and local-
ization in the receive mode. In the transmit mode, when a
single signal is transmitted by the array, no array process-
ing technique can be implemented. Array processing in the
transmit mode could be possible only when the transmitted
signal is coded in space, that is, different elements of the
array transmit different signals.

Transmission of orthogonal signals from an array is com-
monly used in communication systems [1]. Passive localiza-
tion of orthogonal signals with known waveforms was inves-
tigated in [2]. In [3] it is shown that the conventional config-
uration of one transmitter and two receivers and an alterna-
tive configuration of two transmitters and one receiver, are
equivalent in terms of Cramér-Rao Bound (CRB) on bear-
ing estimation. This configuration requires radiating two
uncorrelated signals from two transmitters. The potential
advantage of this configuration over the conventional one
is in applications where the receiving elements are to be
placed on a platform of limited size. The results in [3] are
extended to the case of transducers in [4]. Three possible
combinations of four transducers: 1) one transmitter and
three receivers, 2) two transmitters and two receivers, and
3) three transmitters and one receiver were investigated.
These configurations have identical performance in terms
of angle estimation accuracy, where the transmitting sig-
nals are orthogonal.

In this paper, we present a configuration for spatial cod-
ing of the transmitted signal, and analyze its properties in
target detection and localization. In the new configuration,
each element or sub-array of elements transmits a different
signal. In the receive mode, the output of each element
or subarray is matched to all the transmitted signals. Ar-
ray processing algorithms are applied to the output of the
matched-filters, based on the transmit-receive model. The
main advantages of this new configuration are: 1) avoid
beam-shape loss, 2) larger virtual array aperture, and there-
fore narrower beams, 3) increase the angular resolution, and
4) ability to detect and localize a larger number of targets.

2. SPATIALLY CODED SIGNAL MODEL

Consider an M element antenna array transmitting M narrow-
band signals. The N samples of baseband equivalent signals
are denoted by {s[n]}N

n=1 with correlation matrix

Rs =
1

N

N∑
n=1

s[n]sH [n] =

⎡
⎢⎢⎣

1 β12 · · · β1M

β21 1 · · · β2M

...
...

. . .
...

βM1 βM2 · · · 1

⎤
⎥⎥⎦ ,

(1)
where βij is the correlation coefficient between the ith and
jth signals, and the phases of {βij}M

i,j=1 control the trans-
mitted beam direction. In the case of coherent transmitted
signals, the rank of the matrix Rs is reduced. In common
radar systems, for example, coherent signals are transmit-
ted from the array and therefore the rank of Rs is equal to
one1.

In the presence of a single target at direction θ, the
received signal at the mth element of the array located at

(x
(1)
m , x

(2)
m ) (see Fig. 1), is given by:

ym[n] = α
∑M

i=1
Ami(θ)si[n] + wm[n] m = 1 , . . . , M

n = 1 , . . . , N
(2)

where α is the complex amplitude of the reflected signal
from the target, wm[n] is the additive noise at element m,
and Ami(θ) = exp(−jwcτmi) describes the total phase delay
of the signal, transmitted by the mth element and received
by the ith element, where wc is the carrier frequency. The
total delay from the ith transmitting element to the mth
receiving element for the far-field case is τmi = τm + τi,

1The different elements transmit the same signal with phase
shifts for beam steering.
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where τi =
x
(1)
i

sin(θ)+x
(2)
i

cos(θ)

c
and c is the propagation

speed. The array response Ami(θ) can be decomposed as:
Ami(θ) = am(θ)ai(θ), where am(θ) = exp(−jwcτm).
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Figure 1: Array configuration

In matrix notation, Eq. (2) can be written as:

y[n] = αA(θ)s[n] + w[n] n = 1, . . . , N , (3)

where A(θ) = a(θ)aT (θ) is the matrix of array response,
y[n], s[n] and w[n] are the vectors of received signal, trans-
mitted signal and additive noise, respectively.

The vector of unknown parameters includes the DOA
and the complex amplitude: ξ = [θ α]T , which is modeled
as deterministic unknown. The noise vectors {w[n]}N

n=1 are
assumed to be white, zero-mean, complex Gaussian with
covariance matrix σ2

wIM , where IM is an identity matrix of
size M.

In this paper, we consider the single target case. Ex-
tension to multiple case is straightforward. The objective
herein is to:

1. Derive the ML estimator for target DOA estimation
based on the measurement model of (3);

2. Derive the GLRT for target detection from the mea-
surements {y[n]}N

n=1 according to the following hy-
potheses:

H0 : y[n] = w[n]
H1 : y[n] = αA(θ)s[n] + w[n] ;

(4)

3. Derivation of the CRB for target localization.

3. TARGET DETECTION AND DOA
ESTIMATION

In this section we investigate the properties of the proposed
model. First, the sufficient statistics for detection and esti-
mation algorithms will be derived. In subsections 3.2 and
3.3, the ML and GLRT for DOA estimation and target de-
tection are presented.

3.1. Sufficient Statistics

According to the assumptions stated in the previous sec-
tion, the measurements are independent complex Gaussian

vectors with y[n] ∼ N c(αA(θ)s[n], σ2
wIM ). Hence, the log-

likelihood function for estimating ξ from the data Y =
(y[1], . . . ,y[N ]) can be expressed as

logfY(Y; ξ) = −MNlog(πσ
2
w) −

1

σ2
w

N∑
n=1

y
H [n]y[n]

︸ ︷︷ ︸
h(Y)

+
2

σ2
w

Re

{
α
∗

N∑
n=1

s
H [n]AH (θ)y[n]

}
︸ ︷︷ ︸

g1(Y,ξ)

−
|α|2

σ2
w

N∑
n=1

||A(θ)s[n]||2

︸ ︷︷ ︸
g2(ξ)

.

We are interested in finding the sufficient statistics for es-
timating ξ. According to the Neyman-Fisher factorization,
the function g1(·, ·) depends on the data Y only through
the sufficient statistics. Denoting the columns of A(θ) by
{am(θ)}M

m=1, we obtain:

g1(Y, ξ) =
2

σ2
w

Re

{
α∗

M∑
m=1

aH
m(θ)ηm(Y)

}
(5)

where ηm(Y) = 1
N

∑N

n=1
y[n]s∗m[n] is the mth sufficient

statistics and it is obtained by matching the observed data
to the mth signal, {sm[n]}N

n=1. Note that

g2(ξ) = − |α|2
σ2

w

∑N

n=1
sH [n]AH(θ)A(θ)s[n] =

−N|α|2
σ2

w
tr(AH(θ)RsA(θ)) = −NM|α|2

σ2
w

aH(θ)Rsa(θ)
(6)

Hence, the log-likelihood function of Y can be written as

logfY(Y; ξ) = h(Y) + 2
σ2

w
Re

{
Nα∗ ∑M

m=1
aH

m(θ)ηm(Y)
}

−NM|α|2
σ2

w
aH(θ)Rsa(θ) .

(7)
It can be shown that for non-orthogonal signals, the suf-

ficient statistics {ηm(Y)}M
m=1 are statistically dependent.

For simplicity of the algorithms we are interested in in-
dependent sufficient statistics {η̃m(Y)}M

m=1, which can be
obtained as follows. The signal correlation matrix from (1)
can be decomposed using SVD as Rs = UΛUH , where U
and Λ are the matrices of eigenvectors and eigenvalues of
Rs, respectively. Accordingly, the vector of independent
signals can be obtained by

s̃[n] = Λ−1/2UHs[n] . (8)

The modified sufficient statistics vector ia defined as

η
�
= vec[η̃1(Y), . . . , η̃M (Y)] = vec

(
1

N

N∑
n=1

y[n]s̃H [n]

)
.

(9)
The configuration for obtaining the sufficient statistics from
the data is described in Fig. 2. By inserting Eqs. (3) and
(8) into (9), we obtain

η̃ = vec

(
αA(θ)

1

N

N∑
n=1

s[n]s̃H [n] +
1

N

N∑
n=1

w[n]s̃H [n]

)
.

(10)
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Finally, Eq. (10) can be written in the form

η = αd(θ) + v , (11)

where d(θ) = vec(A(θ)UΛ1/2) is the equivalent array re-

sponse and v = vec
(∑N

n=1
w[n]s̃[n]H

)
= [vT

1 , . . . ,vT
M ]T ,

whereas the {vm}M
m=1 are i.i.d. with vm ∼ N c(0, σ2

wIM ).
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Figure 2: Sufficient statistics extraction

In order to illustrate the advantage of the proposed con-
figuration (11), we examine an example with three array
elements (M=3), which are located at vertexes of an equi-
laterial triangle (see the first 3 x-points in Fig. 1). For in-
coherent signals, the passive equivalent array response can
be written as d(θ) = vec(A(θ)) or in terms of phase delay
we obtain

dm+i(θ) = Ami(θ) = exp(−jwcτmi), m, i = 1, . . . , M.
(12)

By examining Eq. (12), we obtain 6 different delays (in-
stead of 3 in the case of coherent signals), which are equiv-
alent to 6 sensors: 3 original sensors and 3 virtual sensors
which are located according to Fig. 1 (see o-points). Gen-
erally, the extended array geometry can be obtained by vec-
tor summation of all couples of the actual sensor locations.
This phenomenon enables to double the virtual aperture of
the array. This virtual aperture extension is very impor-
tant for obtaining higher DOA estimation accuracy, nar-
rower beams and therefore higher angular resolution, and
better detection performance.

3.2. Maximum Likelihood (ML) estimation

Herein, the ML estimator for target localization for model
(11) is given by

(θ̂, α̂)ML = arg min
θ,α

||η − αd(θ)||2 . (13)

Differentiating (13) with respect to α and then equating to
zero, we obtain

α̂ML = (d(θ)Hd(θ))−1d(θ)η (14)

and the ML estimator for θ is given by

θ̂ML = arg max
θ

{
ηHPd(θ)η

}
. (15)

where Pd(θ) = d(θ)(d(θ)Hd(θ))−1dH(θ) is a projection
matrix into the subspace spanned by d(θ).

3.3. Detection

The GLRT for the two hypotheses defined in (4), is given
by

L(Y) = logfY(Y; θ̂, α̂, H1) − logfY(Y; H0)

H1

>
<
H0

δ . (16)

It can be shown that logfY(Y; H0) = h(Y). Using Eqs. (7)
and (14), the log-likelihood ratio function can be rewritten
as

L(Y) = ηHPd(θ̂ML)η . (17)

The threshold δ is set according to the desired false alarm
rate. The statistics of L(Y) under the two hypotheses are

given by: 2L(Y) ∼
{

χ2
2, H0

χ
′2
2 (ρ), H1

where χ2
2 and χ

′2
2 (ρ)

- central and non-central chi-squared distributions with 2
degrees of freedom, respectively; and ρ is the non-centrality
parameter, which is equal to λ = 2|α|2d(θ)Hd(θ) (for or-
thogonal signals λ = M).

4. CRAMÉR-RAO BOUND

The CRB for estimation of θ according to the model in (3)
is (see [5])

CRB(θ) =
tr(AHRsA)

2SNR(tr(ȦHRsȦ)tr(AHRsA) − |tr(ȦHRsA)|2 )
(18)

where SNR = |α|2
σ2

w
, and Ȧ is the derivation of A with re-

spect to θ. For the case of 2 orthogonal signals, the minimal
CRB is obtained by |β| = 0, which represents the case of
orthogonal transmitted signals. The design of orthogonal
signals is discussed in [1].

The DOA estimation performance with incoherent trans-
mitted signals is superior comparing to the case of corre-
lated transmitted signals, because transmitting incoherent
signals enables to extend the virtual aperture of the array,
which narrows the beam shape. In the case of θ = 0◦, there
is no loss in the gain of the array beam, henceforth the per-
formance will be the same for any value of the correlation
factor.

5. SIMULATION RESULTS

In this section, we demonstrate via simulations the detec-
tion and localization performance for the case of spatially
coded signals. An array of two elements with half a wave-
length spacing was chosen. Fig. 3 shows the square root of
the CRB for different angles: 0o, 20o, 30o, 40o as a function
of correlation coefficient |β|. It is evident that the CRB
is minimized at |β| = 0. For θ = 0o, the CRB is con-
stant for all correlation factors. It can also be seen that the
CRB is increased monotonically with |β|. Fig. 4 presents
the root-mean-square-error (RMSE) for target localization
and CRB for different values of |β|: 0, 0.5, 1 as a func-
tion of SNR. It can be seen that the RMSE increases with
|β|. This due to the beam shape loss in transmission when
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|β| �= 0. In the case of |β| = 0, the algorithm steers the
transmitted beam in teh receive mode and therefore beam
shape loss is avoided. In Fig. 5 Receiver Operation Char-
acteristic (ROC) curves are presented using theoretical and
simulation results versus different values of |β|: 0, 0.5, 1,
for SNR = 10 dB.

0 0.2 0.4 0.6 0.8 1
0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

|β|

R
M

S
E

 [d
eg

]

θ=0o

θ=20o

θ=30o

θ=40o

Figure 3: CRB for different correlation coefficients

0 5 10 15 20 25 30
10

−1

10
0

10
1

10
2

SNR [dB]

R
M

S
E

 [d
eg

]

θ=40°

ML, β=0
CRLB(θ), β=0
ML, β=0.5
CRLB(θ), β=0.5
ML, β=1
CRLB(θ), β=1

Figure 4: ML and CRB as a function of SNR for different
correlation coefficients

6. DISCUSSION AND CONCLUSIONS

We presented a new approach for signal transmission in
radar and sonar systems, which enables to avoid beam-
shape loss by transmitting different, incoherent signals. The
proposed method allows to extend the virtual aperture of
the array, enabling to generate narrower beam-width and to
improve the angular resolution. On the other hand, because
of incoherent transmitted signals, the gain of the main beam
is lower than in the conventional beamforming method. The
target localization performance of the proposed configura-
tion is superior compared to the conventional one when the
signal is not in the center of the beam.

Another important property of the new model is the
time required to scan a given region of interest (ROI). In
conventional beamforming, the scan time of the whole ROI
is the time required to cover the ROI with directed, nar-
row and overlapped beams. In the new approach, the wide
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Figure 5: ROC for different correlation coefficients

or omni-directional beams, enable to enlarge the time-on-
target period during the scan time of conventional beam-
forming. The target detection performance is better than
the conventional model because in the new configuration,the
beam overlaps and beam-shape-loss can be avoided.

In practice, multiple matched filtering for each sensor,
as presented in Fig. 2, may be complicated and be expen-
sive in systems with large number of sensors. Therefore, in
such systems the new configuration may be implemented
by division of array of sensors into sub-arrays, transmitting
different signals.
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