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ABSTRACT

We present an analysis of the performance of Bayesian
beamformers that are able to estimate signals from un-
known source directions by balancing multiple optimal
estimates according to the a posteriori probability mass
function (PMF). We show that the conditional mean square
error (MSE) of the Bayesian beamformer asymptotically
achieves the conditional MSE of an estimator that has
prior knowledge of the true direction of arrival. The
convergence rate depends on both the signal-to-noise ra-
tio (SNR) and the Kullback Leibler distance between
certain probability distributions on which the Bayesian
model is defined.

1. INTRODUCTION

We consider a set of D narrowband signals arriving at an
array of N sensors. At time k, the observed data vector is
given by

xk =
D−1∑
m=0

a(um)sm,k + wk (1)

where sm,k, m = 0, ..., D−1 are the D equivalent discrete-
time baseband zero-mean source signals and wk is a vector
of noise samples and where sm,k and wk are modeled as
independent identically distributed (i.i.d.) Gaussian random
processes that are mutually independent; a(um) is the Nx1
array manifold vector defined on the normalized spatial fre-
quency (or direction) um.

We assume that one of the signals is the desired signal
and denote it by s and its direction by u0. The observed data
can be expressed as

xk = a(u0)sk + nk. (2)
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where nk is the interference-plus-noise component with co-
variance Rn. The data covariance matrix has the form

Rx = E[xkxH
k ] (3)

= σ2
sa(u0)a(u0)H + Rn (4)

where σ2
s is the power of the desired signal.

We consider the estimation of the desired signal from
all the available data Xk = {x1, . . . ,xk} using a linear
array processor. Given the direction u0, the minimum mean
square error (MMSE) optimal estimate is [1]

ŝk,MMSE = E[sk|Xk, u0] (5)

= σ2
sa(u0)HR−1

x xk. (6)

Next, we introduce a new estimate ŝk(u) that has the form

ŝk(u) = σ2
sa(u)HR−1

x xk. (7)

where the variable u is referred as the look direction. When
u = u0, the estimate is the MMSE estimate. We consider
the conditional MSE of this estimator in general:

ζ(u) = E[|ŝk(u) − sk|2|u0] (8)

= σ2
s(1 − σ2

sa
H
0 R−1

x a0) + σ4
s‖a(u) − a0‖2

x (9)

where,

a0 � a(u0) (10)

‖a‖2
x � aHR−1

x a. (11)

When the look direction matches with the true direction, the
MSE achieves its minimum, that is

ζopt = ζ(u0) = σ2
s(1 − σ2

sa
H
0 R−1

x a0). (12)

Rewriting (9), the MSE of the estimator with look direction
u is a sum of the optimal term and a redundancy term:

ζ(u) = ζopt + σ4
s‖a(u) − a0‖2

x. (13)
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2. THE BAYESIAN APPROACH

Using a Bayesian approach [2], the unknown source direc-
tion is assumed to be a discrete random variable u that takes
on values in the set U = {u1, . . . , uL}. The data samples
x1, . . . ,xk are conditionally independent given u. How-
ever, without prior knowledge of the value of u, the data
samples are statistically dependent. Each sample xk can
be described by the conditional probability density func-
tion (PDF) p(x|u) and the a priori PMF p(u), and p(xk) =∑

v p(v)p(xk|v).
Using the Bayesian model, the MMSE estimate of sk

can be written

ŝB,k = E[sk|Xk] (14)

= Eu[E[sk|Xk, u]] (15)

=
∑
u∈U

p(u|Xk)E[sk|Xk, u] (16)

=
∑
u∈U

p(u|Xk)ŝk(u) (17)

where

p(u|Xk) =
p(u)p(Xk|u)∑
v p(v)p(Xk|v)

. (18)

The estimate can be viewed as a weighted average over mul-
tiple optimal estimates, each with different look directions.
The weighting coefficients are governed by the a posteri-
ori PMF of u given the available data. When k becomes
large, the a posteriori PMF adapts to the environment and
the Bayesian estimator converges to a single MMSE estima-
tor with the optimal look direction in a mean square sense.

To implement this estimator, we need both p(xk|u) and
p(u). The former can be derived from prior knowledge of
the statistics of the noise and interference. The a priori PMF
p(u) may be derived from prior statistical knowledge of the
true direction for the problem at hand.

3. PERFORMANCE ANALYSIS

We evaluate the performance of the Bayesian estimate ŝB,k

by calculating the corresponding conditional MSE at time
k:

ζB,k = E[|ŝB,k − sk|2|u0]. (19)

Note that we are interested in the conditional MSE, as we
would like to extend these results to cases when our Bayesian
model does not hold, i.e., when u0 �∈ U . When the Bayesian
model does hold, i.e, when u0 ∈ U , the unconditional MSE
is related to the conditional MSE as

E[|ŝB,k − sk|2] =
∑

u

p(u)E[|ŝB,k − sk|2|u]. (20)

For cases when u0 is not included in the parameter space
U , we will show that the algorithm converges to a particular
direction u∗, where u∗ is the nearest point to u0 with respect
to certain distance metric that will be described later.

We begin by introducing an arbitrary estimate, s̃B,k,
which is defined to be

s̃B,k =
∑
u∈U

p(u|Xk−1)ŝk(u). (21)

This estimate is different from the Bayesian estimate in (17)
by the composition of the weighting coefficients. The for-
mer uses all of the k available data samples to form the
weighting coefficients, while the latter uses only the first
k − 1 data samples.

The MSE of s̃B,k is upper bounded as

ζ̃B,k = E[|s̃B,k − sk|2|u0] (22)

= E[|
∑

u

p(u|Xk−1)ŝk(u) − sk|2|u0] (23)

≤
∑

u

E[p(u|Xk−1)|ŝk(u) − sk|2|u0]. (24)

Since the expectation is taken over Xk conditioned on u0

and the data samples x1, . . . ,xk are conditionally indepen-
dent, the expected value of the weighting coefficients and
the mean square error term can be separated into a product
of two expectations, that is

E[p(u|Xk−1)|ŝk(u) − sk|2|u0] (25)

= E[p(u|Xk−1)|u0] · E[|ŝk(u) − sk|2|u0]. (26)

The first term involves Xk−1, and the second expectation
involves only xk.

To aid our discussion about the closeness of one direc-
tion to another, we consider the Kullback Leibler distance
between p(xk|u0) and p(xk|u), that is

D(p(xk|u0)||p(xk|u)) = E

[
ln

p(xk|u0)
p(xk|u)

]
(27)

=
∫

p(xk|u0) ln
p(xk|u0)
p(xk|u)

dxk

(28)

� D(u0||u). (29)

The value is 0 if and only if u = u0. For cases when u0 �∈
U , we consider u∗ ∈ U , which minimizes D(u0||u) over
all u ∈ U , that is,

u∗ = argmin
u∈U

D(u0||u). (30)

Using a technique similar to that in [3], the following
theorem is established to describe the mean convergence
behavior of the weighting coefficients E[p(u|Xk−1)|u0] for
every u ∈ U .
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Theorem 1: If D(u0||u) exists ∀u ∈ U and there is an
interval πT = (0, T ] ⊂ (0, 1] such that E[(p(x|u)/p(x|u∗))t]
exists ∀t ∈ πT , u ∈ U , then the conditional expectation of
the weighting coefficients are bounded as{

0 ≤ E[p(u|Xk)|u0] < c(u) ηk(u) u �= u∗

(1 +
∑

v �=u∗ c(v)ηk(v))−1 < E[p(u|Xk)|u0] ≤ 1 u = u∗

(31)

where c(u) > 0 is a constant and 0 ≤ η(u) < 1 for all
u �= u∗. It follows that

lim
k→∞

E[p(u|Xk)|u0] =

{
0 u �= u∗

1 u = u∗.
(32)

The proof is given in the next section.
The second expectation term in equation (26) is the same

as the general conditional MSE ζ(u) in equation (9). Thus,
the inequality in (22) becomes

ζ̃B,k ≤
∑

u

E[p(u|Xk−1)|uo]ζ(u) (33)

≤ ζopt + σ4
s

∑
u

E[p(u|Xk−1)|u0] · ‖a(u) − a(u0)‖2
x.

(34)

From Theorem 1, the coefficient E[p(u|Xk−1)|uo] is upper
bounded by 1 or c(u) ηk−1(u) depending on different val-
ues of u. Using ζ(u∗) = ζopt + σ4

s‖a(u∗) − a0‖2
x from (9),

we have

ζ̃B,k ≤ ζ(u∗) + σ4
s

∑
u�=u∗

c(u)‖a(u) − a0‖2
x ηk−1(u).

(35)

The analysis is completed by noting that ζB,k ≤ ζ̃B,k by the
definition of the MMSE estimate of sk given {x1, . . . ,xk}.

Overall, the conditional MSE ζB,k of the Bayesian esti-
mate ŝB,k is bounded as

ζB,k ≤ ζ(u∗) + σ4
s

∑
u�=u∗

c(u)‖a0 − a(u)‖2
x ηk−1(u).

(36)

When k → ∞, the performance of the Bayesian estimator
achieves ζ(u∗). When u0 is included in the set U , then
u∗ = u0 and ζ(u∗) = ζopt.

4. PROOF OF THEOREM 1

Because p(u|Xk) ≤ 1 ∀u ∈ U ,

p(u|Xk) ≤ p(u|Xk)t, t ∈ πT (37)

Case 1: (u �= u∗) From equation (18),

p(u|Xk) ≤ p(u|Xk)t =
(

p(u)p(Xk|u)∑
v p(v)p(Xk|v)

)t

(38)

≤
(

p(u)p(Xk|u)
p(u∗)p(Xk|u∗)

)t

(39)

where the last step is obtained by removing all terms in the
denominator except the term p(u∗)p(Xk|u∗). Taking the
conditional expectation, we have

E[p(u|Xk)|u0] ≤ E

[(
p(u)p(Xk|u)

p(u∗)p(Xk|u∗)

)t

|u0

]
(40)

= E

[(
p(u)

∏k
i=1 p(xi|u)

p(u∗)
∏k

i=1 p(xi|u∗)

)t

|u0

]
(41)

=
(

p(u)
p(u∗)

)t

E

[(
p(xk|u)
p(xk|u∗)

)t

|u0

]k

(42)

We need to show that E[(p(xk|u)/p(xk|u∗))t|u0] is strictly
less than 1 [3]. We consider the difference between two
Kullback Leibler distances D(u0||u∗) and D(u0||u):

D(u0||u∗) − D(u0||u)
=E{ln[p(x|u)/p(x|u∗)]|u0} (43)

=E

{
d

dt
[p(x|u)/p(x|u∗)]t|t=0|u0

}
(44)

=E{lim
t→0

([p(x|u)/p(x|u∗)]t − 1)
t

|u0}. (45)

According to the Lebesgue dominated-convergence theo-
rem [4], the expectation and limit can be interchanged such
that

D(u0||u∗) − D(u0||u) = lim
t→0

E[p(x|u)/p(x|u∗)]t} − 1
t

.

(46)

For any δ > 0, there exists t = t(δ) ∈ πT such that

E{[p(x|u)/p(x|u∗)]t} − 1
t

≤ [D(u0||u∗) − D(u0||u)](1 + δ)

(47)

or

E{[p(x|u)/p(x|u∗)]t} ≤ 1 − t(1 + δ)[D(u0||u) − D(u0||u∗)]
(48)

By the definition of u∗, D(u0||u) > D(u0||u∗), and thus
the right hand side is upper bounded by 1. This is true for
all u �= u∗. The left hand side is always non-negative. By
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defining the right hand side of (48) to be η(u) and (p(u)/p(u ∗))t

to be c(u), we have for u �= u∗

E[p(u|Xk)|u0] ≤ c(u) ηk(u) (49)

where

0 ≤ η(u) < 1. (50)

Case 2: (u = u∗) From equation(18),

p(u∗|Xk) =
p(u∗)p(Xk|u∗)∑

v p(v)p(Xk|v)
(51)

=
(

1 +
∑

v �=u∗

p(v)p(Xk|v)
p(u∗)p(Xk|u∗)

)−1

(52)

Taking expectation of both sides and by the Jensen’s in-
equality, we have

E[p(u∗|Xk)|u0] ≥
(

1 +
∑

v �=u∗
E

[
p(v)p(Xk|v)

p(u∗)p(Xk|u∗)
|u0

])−1

(53)

>

(
1 +

∑
u�=u∗

c(u)ηk(u)
)−1

. (54)

The last step is obtained from the result of the previous case.
Lastly, since p(u|Xk) is a PMF, it must lie between 0

and 1 for all u, and this completes the proof of Theorem 1.

5. DISCUSSION

The convergence rate of the conditionalMSE is governedby
the convergence rate of the weighting coefficient p(u|Xk).
Each coefficients has its corresponding convergence rate gov-
erned by η(u), which is related to the difference between
two Kullback Leibler distances D(u0||u) and D(u0||u∗) ac-
cording to (48). This quantity can be viewed as the theoret-
ical measurement of the distance between u and u∗ with
respect to u0, Thus, one can claim that the weighting coef-
ficients of all u ∈ U converge at different rates proportional
to their relative distances to u∗, whereas a large distance
induces a fast convergence rate and vice versa.

The signal-to-noise ratio also plays a role in determining
the convergence rate. Low SNR reduces the variation of
the a posteriori PMF along u. When this happens, the a
posteriori PMF’s of two directions may become more alike.
Both Kullback Leibler distances D(u0||u) and D(u0||u∗)
become closer to 0 and thus closer to each other, inducing a
slower convergence rate.

6. SIMULATION

We simulate a Bayesian beamformer in the following set-
tings: Uniform linear array with half-wavelength spacing
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Fig. 1. Conditional MSE of the Bayesian beamformer

is used. N = 8. U = {−0.5,−0.3,−0.1, 0.1, 0.3, 0.5}.
u0 = 0.08. SNR = 0dB. The a priori PMF p(u) is uniform
over U and thus c(u) = 1. The simulation results are aver-
aged over 1000 trials. Figure 1 shows the conditional MSE
of the Bayesian beamformer and the upper bound (36) in
log scale.
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