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ABSTRACT
This paper deals with the reception of several Global

Navigation Satellite Systems (GNSS) signals using antenna

arrays in the presence of interferences, multipath propaga-

tion and array manifold uncertainties. The proposedmethod

is a new space–time approach where all the Line–Of–Sight

Signals (LOSS) are pointed by the array, and the temporal

reference of the signal is exploited. The work also presents

an extension of this beamforming that takes into account the

incertitudes in the steering matrix due to pointing errors or

array miscalibration. The robustness of this new method is

achieved using second–order cone programming, allowing

its implementationwith highly efficient algorithms. Simula-

tions show the performance of these beamformers in scenar-

ios where coherentmultipath and pointing errors are present.

1. INTRODUCTION

Beamforming with antenna arrays consists of several an-

tennas which outputs are controlled in phase and gain, i.e.,
multiplied by complex weights, in order to achieve a gain

pattern that can be manipulated electronically. Then, all the

weighted signals are combined to obtain a single output that

feeds a conventional single–antenna receiver. Traditional

approaches devoted to GNSS are based in the weakness of

the received signal; it cannot be detected or measured with-

out a correlation process because is under the noise floor

(in GPS, the � � signal has a minimum of � � � 
 dBw at
the Earth’s surface). Therefore, processing algorithms as-

sume that any measurable energy above the noise must be

a jamming signal, so the weights are calculated to null the

direction of arrival of the interference. These techniques are

effective against a limited number of narrowband interfer-

ences, but hardly could cope with broadband interferences

or multipath. More jammers can be mitigated by space-

time adaptive processing techniques exploiting spatial and

temporal information. Conventional space-time (likewise

space-frequency) processing is also based upon the assump-

tion that any measured power must be a jamming signal.
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Thus, a GNSS signal may be attenuated because its Direc-

tion Of Arrival (DOA) is not taken into account.

But the DOA is not a completely unknown information

in GNSS. Satellites are continuously broadcasting a low rate

navigation message which allows to estimate their position.

Hence, a rough estimation of the array position and atti-

tude may be enough to determine the angle of incidence

of the desired signals. The sources are about � 
 � 
 
 
 Km
far from the receiver, so the accuracy in the preliminary re-

ceiver position estimation is not a critical issue. Errors in

the attitude determination appears to have a greater impact

in DOA estimation. These errors are ascribable to the Iner-

tial Measurement Unit (IMU) used; a low–cost Micro Elec-

tro Mechanical System (MEMS) has an accuracy of about� �
degrees and a drift rate of � degrees/hour. Even with a

high–accuracy IMU, pointing errors due to an array miscal-

ibration could not be dismissable at all, provided that array

systems are known to be quite sensitive to mismatches be-

tween the presumed and the actual DOA.

2. PROBLEM FORMULATION

An � –element antenna array receives � scaled, time–delayed
and Doppler–shifted signals with known structure. The re-

ceiving complex baseband signal can be modeled as

� � � � � !" #
$ & '

# ) # � � � ,
# � . 0 2 3 5 � 6 8

# � : < > � � � (1)

where '
#
is the complex amplitude of each signal, ,

#
is the

delay, 8
#
is the Doppler shift, and > � � � represents additive

white Gaussian noise and all other disturbing terms.

Each antenna receives a different replica of this set of

signals, with a different phase depending on the array ge-

ometry and the Directions Of Arrival (DOA). This can be

expressed by a vector signal model, where each row corre-

sponds to one antenna:@ � � � � C � E � F � G I � � � J � L � < M � � � (2)

where1

1The transpose, conjugate and conjugate transpose operations are des-
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� � � � � 
 � � � �
is the observed signal vector,� � � � � � � 
 � � � � , called steering matrix, is related

to the array geometry and the DOA (elevation � �� ! � # # # ! � & '
and azimuth � � � ( � # # # ( � & '

vectors). It may also depend on additional parame-

ters, such as scattering, polarization or calibration co-

efficients.� + � . 0 1 3 � 4 � 
 � � � � is a diagonal matrix with the
elements of the amplitude vector 4 � 8 1 � 9 9 9 1 � ; '
along its diagonal,

� < � � � @ � A � � CD
E

F � � � G H � � J K M O Q R T V � � W
...

F
� � � G H � � J K M O Q R T V � � W

Y [
\ ,

< 
 � � � �
the delayed Doppler–shifted narrowband

signals envelopes, where @ � � H � # # # H � & '
and A � � V � # # # V � & '

, and� ^ � � � 
 � � � �
represents additive noise and all other

disturbing terms, such as interferences or multipath

of each signal. In GNSS, only the LOSS are signals

of interest.

This model is built upon the narrowband array assumption,
consisting of taking the time required for the signal to prop-

agate along the array as much smaller than its inverse band-

width. Thus, a phase shift can be used to describe the prop-

agation from one antenna to another. Taking the _ a sig-
nal specification of the GPS Standard Positioning System

[1] (right hand circularly polarized BPSK signal modulated

by a a # b R e MHz Gold code, filtered at R b MHz and with aa f g f # h R MHz carrier), we have an inverse passband band-
width of approximately

f 9 a b i k s, although in commercial
front–ends the signal is often limited to R MHz ( f 9 a b i m
s). A signal coming from the end–fire propagating along ann
–element linear antenna array with a half wavelength be-

tween antennas takes e 9 a b i o s, and thus the assumption
holds.

In the same way, we have assumed that the Doppler ef-

fect can be modeled by a frequency shift, which is com-

monly referred as the narrowband signal assumption. Due
to the satellite constellation characteristics, the maximum

expected Doppler frequency shift in a GPS receiver is aboutp f
KHz, much less than the signal bandwidth, and again the

proposed assumption seems reasonable. Similar values are

expected in the forthcomingGalileo system, the next step in

GNSS.

Suppose that r snapshots of the impinging signal are
taken at a suitable rate. Then the sampled data can be ex-

pressed as s � � + v x z (3)

ignated by { } ~ � , { } ~ � and { } ~ � respectively. � � } � and � � } � denote real
and imaginary parts

using the following definitions:� s � 8 � � � � � 9 9 9 � � � � i � � ; 
 � � � �
� v � � < � � � � # # # < � � � i � � & 
 � � � �
� z � 8 ^ � � � � 9 9 9 ^ � � � i � � ; 
 � � � �
3. HYBRID SPACE–TIME REFERENCE

BEAMFORMING

This section presents a new type of (multiple) beamform-

ing that exploits a priori DOA information, and where the
pointing errors are neglected. Firstly, we define the follow-

ing notation based on the signal model (3):�� � � � �� s s � �� � � � �� s v ��� � � � �� �� � �� � � � �� v v �
(4)

and �� � �� � � G �� � � �� i �� � �� �� �
(5)

Themean square error (MSE) between the output of a beam-

former with weights � and a temporal reference signal 4 ' v
is � � � � � � ar � � � � s G 4 ' v ��

�
(6)

In this case, the temporal reference is not completely known

but parametrized by the amplitudes 4 , the Doppler shifts A
and the time delays @ . In order to take advantage of the
knowledge of the steering matrix, a spatial constraint is im-

posed to force the beamformer to always point the signals.

This combination of temporal and spatial information can

be called multiple hybrid beamformer, and this new crite-

rion can be stated as follows:� ¡ £¤ � � � � � (7)

subject to � � � � ¦ � � � (8)

The amplitudes vector that minimizes

� � for fixed � , A and@ is �4 � � § � ¨ v © v ' ª i � v © s ' � © (9)

Replacing (9) in (6) we obtain a new cost function that has

to be minimized � � � � � � � � � � (10)

being
�
defined as in equation (5). This is a well-known« linear–constrained (8) quadratic–form (10) optimization

problem. Applying Lagrange’s multipliers technique, the

optimum weight vector is

_ � � � x � � � ¬ (11)
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and making its derivative respect to � � equal to the zero
vector:� � � � � � � � 	 � � � � �� � � � � 	 � � �� � � � � � � � �  

(12)

we obtain the weight vector which minimizes (7):�� � 	 � � �� ! "� � $ �� � � � � � � � & (13)

Applying to (13) the spatial constraints defined in (8), La-

grange multipliers take the form

� � � $ � 	 �� ! "� � � & ! " $ ) � � 	 �� ! "� � �� � � � � & (14)

Finally, inserting (14) in (13), a very interesting expression

for the weight vector is obtained:�� � 	 � � �� ! "� � �� � � � � � (15)� �� ! "� � � $ � 	 �� ! "� � � & ! " $ ) � � 	 �� ! "� � �� � � � � &
This result is a multiple beamformingwhich is a linear com-

bination of two previously known results. On one hand,�� * , � �� ! "� � �� � � � � (16)

is the multiple beamforming under the MSE criterion taking

into account only the temporal reference. On the other hand,�� � . � � �� ! "� � � $ � 	 �� ! "� � � & ! " ) (17)

is the minimum variance beamforming [2] considering only

the spatial information. These solutions have a different be-

havior against multipath and interferences: while � * , tries
to combine constructively the LOSS with the reflections in

order to increase the SNIR, � � . �
combines destructively

such signals to minimize the output signal power [3]. The

multiple hybrid beamforming combines these two behaviors

to mitigate multipath and interferences.

4. ROBUST HYBRID SPACE–TIME REFERENCE
BEAMFORMING

The objective of this section is to obtain a beamforming that

minimizes the estimation error exploiting the prior DOA

information but taking into account the mentioned uncer-

tainties in the steering matrix. Let � � �0 1 �2 � � � � 0 1 2 � �7
, where 0 1 2 are the true DOAs and the error matrix 7
contains the distortions in the DOA estimations. In practi-

cal applications, we assume that the error matrix
7
can be

bounded in some sense; we propose the Frobenius norm8 7 8 : < = 1 = ? @ (18)

The idea is to impose to the plane waves arriving from direc-

tions contained in the region defined by
7
an amplification

gain greater than or equal to unity, following the concept ex-

plained in [4]. This leads to a reformulation of the problem:

A B D� � 	 E � (19)

subject to � 	 G H ) " I � J
G K M � = � (20)

where

M � = � � P G Q G � � � 0 1 2 � � 7 1 8 7 8 : < = U (21)

Using (21) we can express the constraint (20) as V different
constraints in the form

A B DX Y [ ] _ a ] a c e f h 8 � 	 i j � � 	 l j 8 < m 1 o � m q q q V (22)

where

i j
and

l j
are the column vectors of � and 7

and
= j

is the norm of

l j
. Note that

= � s t �
j u " = vj

.

Cauchy–Schwarz inequality says that8 � 	 i j � � 	 l j 8 H 8 � 	 i j 8 � 8 � 	 l j 8 H 8 � 	 i j 8 � = j 8 � 	 8
(23)

and this expression allows an equivalent formulation of the

problem:

A B D� � 	 E � (24)

subject to
= j 8 � 	 8 < � 	 i j

� m o � m q q q V (25)

We have obtained a set of V second–order cone constraints

[5]. For the ease of programming, complex quantities can be

transformed into real values with the following definitions:

w� � y { P � U| P � U } 1 wi j � y { P i j U| P i j U } 1 (26)

wE � y { P E U � | P E U| P E U { P E U }
which permit to express � 	 E � as w� * wE w� .
In order to cast the problem into a second–order cone

program and to benefit of its simple implementation, the

quadratic objective function
w� * wE w� can be easily linearized.

Assuming that
wE
is positive definite,

wE � � 	 � is its
Cholesky factorization, and thus equation (10) can be ex-

pressed as
w� * wE w� � 8 � w� 8 v

, and the minimization of8 � w� 8 v
is equivalent to the minimization of

8 � w� 8
. Hence,

we can convert (24) into a linear objective function sim-

ply defining a nonnegative scalar � and a new (convex) con-
straint

8 � w� 8 < � :
A B D� � (27)

subject to
8 � w� 8 < � (28)
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The problem at hand can be rewritten as:

� � ��� � (29)

subject to
� 	 
� � 
 � , (30)� � � 
� � 
 
� � 
� � � � ,
...�

�
� 
� � 
 
� � 
�

� � �
which is a second–order cone program. The objective (29)

is a convex function and the constraints (30) define a convex

set. Thus, this is a convex programming problem which can

be solved efficiently in polynomial time via interior point

algorithms [5] .

5. SIMULATION RESULTS

An 8–element uniform linear array with half–wavelength

antenna spacing is considered. The simulation scenario con-

sists of a GPS–like BPSK signal centered at � � � � � � � MHz
( � KHz Doppler–shifted), with �  " # $ " dB, a bit rate
of � " � $ Kbps and taken at � samples per bit. It impinges
the array at � � (

from the broadside. An echo coming from� � � (
, �  " # � " dB and with a time delay of a half a bit

(coherent multipath) with respect to the LOSS and � � KHz
Doppler shift is also present. In figure 1 the performance of

the two proposed beamformings in case of perfectly known

steering matrix is shown. The same scenario can be viewed

in figure 2, but considering a mismatch of
� (
in the de-

sired DOA. Both methods are compared with the optimal

beamforming, i.e., with exact knowledge of matrix , (un-
available in practical applications). Each simulated point

corresponds to the average of 100 independent realizations.

In both examples, the proposed robust hybrid beamformer

effectively mitigates coherent multipath and attains a bet-

ter performance than the hybrid beamforming, specially in

presence of pointing errors.
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Fig. 1. Output SNIR for known steering matrix
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6. CONCLUSIONS

This paper presents a space–time approach to multiple beam-

forming which exploits the availability of a priori Direc-
tions Of Arrival information in GNSS mitigating coherent

multipath and interferences. A robust version of this algo-

rithm, where modeling array uncertainties has been taken

into account, has been also derived. The resulting problem

can be cast in a second–order cone program, a convex op-

timization problem which can be solved efficiently by inte-

rior point algorithms in polynomial time. Numerical results

confirm the effectiveness of the proposed beamformers.

7. REFERENCES

[1] U.S. Department of Defense, “Global positioning sys-

tem standard positioning service signal specification,”

Tech. Rep., Navstar GPS, Washington DC, June 2 1995.

[2] Robert A. Monzingo and Thomas W. Miller, Introduc-
tion to Adaptive Arrays, John Wiley & Sons, 1980.

[3] Gonzalo Seco, Antenna Arrays for Multipath and In-
terference Mitigation in GNSS Receivers, Ph.D. thesis,
Dept. of Signal Theory and Communications, Univer-

sitat Politècnica de Catalunya, Barcelona, Spain, July

2000.

[4] Sergiy A. Vorobyov, Alex B. Gershman, and Zhi-Quan

Luo, “Robust adaptive beamforming using worst–case

performance optimization: A solution to the signal mis-

match problem,” IEEE Transactions on Signal Process-
ing, vol. 51, no. 2, pp. 313–324, February 2003.

[5] Miguel Sousa Lobo, Lieven Vanderberghe, Stephen
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