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ABSTRACT

In array applications an important task is adaptive beam-
forming. The Minimum Variance Distortionless Response
(MVDR) beamformer can only be computed if the true spa-
tial correlation matrix is available. In practice, the corre-
lation matrix has to be estimated from the arriving signals,
and in some cases there are only a small number of sam-
ples (snapshots) available. When the number of snapshots
is small, the MVDR beamformer is no longer optimal, and a
low rank MVDR solution can provide a higher SINR. In this
work we will analyze two methods of finding low rank so-
lutions: Steering Independent Conjugate Gradient (SI-CG)
and Steering Dependent Conjugate Gradient (SD-CG). We
will also propose a simplified expression to compute the ar-
riving power from any given direction.

1. INTRODUCTION

The MVDR beamformer is derived assuming that the true
spatial correlation matrix is available. In practice, only an
estimate of the correlation matrix is available. In some ap-
plications, there is only a limited number of snapshots avail-
able for estimating the spatial correlation matrix. In these
cases, a low rank solution of the scaled Weiner-Hopf equa-
tions can yield a higher SINR than the full-rank MVDR
beamformer. There are several methods of finding low rank
MVDR beamformers, such as the Principal Components In-
verse (PCI) algorithm [1] and the Multi-Stage Wiener Filter
(MWF) of Goldstein et. al. [2]. In [3], Guido et. al. proved
an equivalence between the MWF and the Conjugate Gra-
dient (CG) Algorithm.

In this paper we also investigate the relationship be-
tween Steering-IndependentAdaptiveBeamforming and Steering-
Dependent Adaptive Beamforming (ABF). The scenario as-
sumes the formation of multiple adaptive beams, each pointed
to a different “look” direction. In Steering-Dependent ABF,
a Generalized Sidelobe Canceler (GSC) is formed for each
“look” direction. Mathematically, the GSC serves to convert
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the constrained MVDR optimization problem to an uncon-
strained optimization problem, thereby enforcing a-priori
the unity gain constraint in the “look” direction. In con-
trast, in Steering-Independent ABF, a scaled version of the
Wiener-Hopf equations is solved, and the unity gain con-
straint is enforced a-posteriori through simple scaling of the
resulting ABF weight vector.

Implementation of a GSC for each “look” direction re-
quires the construction and application to the data of a block-
ing matrix for each “look” direction. The attendant com-
putational complexity is quite substantial. In this paper,
we prove a very important and somewhat surprising result:
the low-rank beamformer obtained with Steering Dependent
Conjugate Gradients (SD-CG) is exactly the same as the
low-rank beamformer obtained with Steering Independent
Conjugate Gradients (SI-CG). This is an important result
because Weippert et. al. [4] showed that a SD-CG sig-
nificantly outperformed a Steering Independent version of
PCI. Thus, our result dictates that we can obtain the perfor-
mance of SD-CG without having to form blocking matrices
for each “look” direction.

2. LOW RANK MVDR SOLUTIONS

2.1. Steering-Independent Beamforming

The MVDR beamformer is found by solving the constrained
optimization problem:

min Sxx(θ) = wH(θ)Rw(θ)
w(θ) s.t. wH(θ)s(θ) = 1 (1)

where s(θ) is the steering vector for a direction θ, R is the
spatial correlation matrix and M is the number of elements
in the array. Sxx(θ) is a measure of power arriving from
the direction θ. In order to keep expressions simple we will
omit the direction θ from both w(θ) and s(θ) in the fol-
lowing equations. However, it should be kept in mind that
w and s are associated with a particular “look” direction θ.
Using the Method of Lagrange Multipliers and taking the
gradient of the augmented objective function dictates that
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the solution to the constrained optimization problem in (1)
may be computed as the solution to

Rw = λs, (2)

where the Lagrange multiplier serves to satisfy the unity
gain constraint in (1). In Steering-Independent CG, the CG
algorithm is used to solve Rw′ = s; the solution obtained
at step r of CG is denoted w

′(r). The unity gain constraint
is satisfied a-posteriori by scaling w

′(r) according to

w(r) = w
′(r)/(sHw

′(r)) (3)

We refer to this procedure of finding a low rank MVDR so-
lution as SI-CG. This procedure solves Rw′ = s without
satisfying the unity gain constraint a-priori. When CG is
terminated, scaling is used a-posteriori to satisfy the con-
straint in (1). In contrast, SD-CG (developed in the next
section), enforces the unit gain constraint a-priori through
the use of a blocking matrix.

Dietl et. al. [3] observed that at each step r the out-
put vector of the CG algorithm, w

′(r), minimizes the error
metric

e(w
′(r)) = (R−1s− w

′(r))HR(R−1s− w
′(r)) (4)

for a w
′(r) constrained to the Krylov subspace K(r)

si defined

by the column space of K(r)
si , where

K(r)
si = [ s

... Rs
... . . .

... Rr−1s ] (5)

Since after r steps the solution is constrained to a r dimen-
sional subspace; it is also referred as a rank r solution.

2.2. Steering-Dependent Beamforming

We use a blocking matrix B(θ), which columns have unit
norm and are made to be the orthogonal complement of the
steering vector s(θ). Thus we can write the desired beam-
former as the sum of the steering vector and a linear com-
bination of orthornormal vectors, which are the columns of
B(θ),

w(θ) = s(θ) + B(θ)u(θ) (6)

Assuming, without loss of generality, that s(θ) has unit norm
for each look direction θ, s(θ)Hs(θ) = 1. To keep expres-
sion simple we, again, omit the direction θ. Substituting (6)
into equation (1), the optimization problem becomes uncon-
strained, since the constraint s Hw = 1 is always satisfied.
The problem can be re-stated as:

min (s + Bu)HR(s + Bu)
u (7)

Taking the gradient of (7) yields the optimal value of u as
the solution to

(BHRB)u = −BHRs (8)

Similarly to SI-CG we use the CG algorithm for low rank
solutions u(r) to (8). Substituting u(r) for u into (6) we ob-
tain a low rank beamformer w which is referred as w(r+1).
We added one to the rank because the steering vector is al-
ready in the subspace. We refer to this procedure as SD-CG.
Using the CG algorithm u(r) is restricted to the Krylov sub-
space K(r)

u defined by the column space of K(r)
u , where

K(r)
u = [ BHRs

... (BHRB)BHRs
... . . .

(BHRB)r−1BHRs ] (9)

Using equations (6) and (9), the subspace that w(r) is re-
stricted to is R(K(r)

sd ), where the operator R denotes the
range space of the matrix and

K(r)
sd = [ s

... BK(r−1)
u ] (10)

After some algebraic manipulation, we have

K(r)
sd = [ s

... (BBHR)s
... . . .

... (BBHR)r−1s ] (11)

3. EQUIVALENCE BETWEEN SI-CG AND SD-CG

In this section we prove that SI-CG and SD-CG yield the
same beamformer for a same rank solution. First we prove
that the SI-CG and SD-CG rank r beamformers are restricted
to the same subspace; i.e., we show that the range of the ma-
trices K(r)

si and K(r)
sd from equations (5), (11) respectively

are the same. Then we derive closed-form expressions for
both SI-CG and SD-CG beamformers and show that they
are the same.

3.1. Same Subspaces

When a vector is pre-multiplied by the matrix BBH the
component in the direction of s is removed and the com-
ponents orthogonal to s are kept unchanged. Thus

span{s,Rs} = span{s,BBHRs} ⇒ K(2)
si = K(2)

sd (12)

That is, the beamformers from a rank two SD-CG solution
and a rank two SI-CG solution are restricted to the same
subspace.

The following theorem states that if the SD-CG and SI-
CG Krylov subspaces of dimension r are the same, then the
Krylov subspaces of dimension (r+1) will also be the same.
To simplify notation, we define C = BBHR.
Theorem

If span{s,Cs, . . . ,Crs} = span{s,Rs, . . . ,Rrs}, then
span{s,Cs, . . . ,Cr+1s} = span{s,Rs, . . . ,Rr+1s}
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Proof

i) span{s,Cs, . . . ,Cr+1s} =
span{s,Rs, . . . ,Rrs,Cr+1s}, by hypothesis

ii) Cr+1s = C(Crs) = C(
∑r

i=0 αiRis) =∑r
i=0 αiCRis = BBH

∑r
i=0 αiRi+1s

iii) span{s,Rs, . . . ,Rrs,Cr+1s} =
span{s,Rs, . . . ,Rrs,BBH

∑r
i=0 αiRi+1s} =

span{s,Rs, . . . ,Rr+1s}, because BBH only
removes the component in the direction of s from the
vectors Ri+1s, for i = 0 to r, and s is already in the
set as well as Ri+1s, for i = 0 to r − 1.

From i) and iii)
span{s,Cs, . . . ,Cr+1s} = span{s,Rs, . . . ,Rr+1s}Q.E.D.

Since we showed that K(2)
si = K(2)

sd , we have proved by
induction that for r ≥ 2: span{s,Rs,R2s, . . . ,Rr−1s} =
span{s, (BBHR)s, (BBHR)2s, . . . , (BBHR)r−1s}
Thus, the subspace the rank r SI-CG beamformer is con-
strained to lie in is the same as the subspace that the rank r
SD-CG beamformer is constrained to lie in.

3.2. Closed expressions for wsi and wsd

3.2.1. SI-CG

Since we have proved that the rank r beamformers for SI-
CG and SD-CG lie within the same subspace, the unscaled
(prior to scaling to satisfy the unity gain constraint) SI-CG

beamformer w
′(r)
si may be expressed as

w
′(r)
si = K(r)

si y = K(r)
sd x (13)

At this point in the development,Ksd is known, and we seek
an expression for x. For uniqueness of x, we assume that
the columns of K(r)

sd are linearly independent. If they are
not a linearly independent set, then, without loss of gener-
ality, we redefine K(r)

sd by removing an appropriate number
of columns to achieve independence while maintaining the
same column space.

The superscript r is omitted in the following develop-
ment for purposes of notational simplicity. wsi minimizes
the objective function in (4). Substituting the expression for
wsi in (13) into (4), and taking the gradient and setting it to
zero yields

KH
sdRKsdx − KH

sds = 0

⇒ x = (KH
sdRKsd)−1KH

sds (14)

Substituting the expression for Ksd in (10), the inverse of
KH

sdRKsd may be expressed as

(KH
sdRKsd)−1 =

[
sHRs sHRBKu

KH
u BRs KH

u BHRBKu

]−1

(15)
In addition, it follows that

KH
sds = [1

... 0]H (16)

Substituting (15) and (16) into (14) dictates that only the
first column of the inverse matrix in (15) is needed. Invok-
ing the block matrix inversion lemma, x may be computed
as

x = β

[
1

−(KH
u BHRBKu)−1KH

u BRs

]
(17)

where β is a multiplicative scalar that will be accounted for
when the unity gain constraint is satisfied. Substituting (17)
into (13), with Ksd given by (10) yields

w′
si = β(s− BKu(KH

u BHRBKu)−1KH
u BRs) (18)

Finally, scaling the above to satisfy the unity gain constraint
wH

sis = 1 yields

wsi = s− BKu(KH
u BHRBKu)−1KH

u BRs (19)

3.2.2. SD-CG

The rank r SD-CG beamformer may be expressed as

wsd = s + Bu = s + BKuz (20)

Since u is determined via the CG algorithm, it is the vector
that minimizes the objective function

e2(u) = uHBHRBu + uHBHRs + sHRBu + const
(21)

with u constrained to lie within the range space of the ma-
trix Ku in (9). Substituting Kuz for u above dictates that z
is the vector that minimizes

zHKH
u BHRBKuz+zHKH

u BHRs+sHRBKuz+const

Taking the gradient and setting it to zero yields

z = −(KH
u BHRBKu)−1KH

u BHRs (22)

In turn, substituting z back into (20) yields

wsd = s− BKu(KH
u BHRBKu)−1KH

u BHRs (23)

Equations (19) and (23) are observed to be identical, thereby
proving that the rank r SI-CG beamformer is equal to the
rank r SD-CG beamformer.
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4. COMPUTATION OF THE POWER SPECTRUM

A measure of the power arriving from a direction θ is given
by the function to be minimized in (1). If the exact MVDR
beamformer w from equation (2) is used, then the expres-
sion for Sxx in (1) can be simplified to Sxx = 1/sHw. We
show that this simplification is also valid when w is substi-
tuted by a low rank solution, w(r) using the CG algorithm.

w
′(r)
si is already known to be the vector in the r di-

mension Krylov subspace that minimizes the error function

given in (4). From equation (13), w
′(r)
si = K(r)

si y, where

K(r)
si is given in (5). Since w

′(r)
si minimizes the error func-

tion (4), y can be found by solving,

min
y

(yHK(r) H
si − sHR−1)R(K(r)

si y − R−1s) (24)

Taking the gradient and setting it to zero

K(r) H
si RK(r)

si y − K(r) H
si s = 0 (25)

Solving the above equation for y, the rank r SI-CG beam-
former is given by,

w
′(r)
si = K(r)

si y = K(r)
si (K(r) H

si RK(r)
si )−1K(r) H

si s (26)

w
′(r)
si is the unscaled low-rank solution to equation (2) ob-

tained via SI-CG; the unity gain constraint is satisfied a-
posteriori via (3). After a fair amount of algebraic manipu-
lations, not included here due to space limitations, we obtain
the following dramatic simplification

Sxx = (w
′(r) H
si Rw

′(r)
si )/(|w′(r) H

si s|2) = (w
′(r) H
si s)−1

(27)
That is, the arriving power obtained with the rank r CG
beamformer may be computed via the far right hand side
of (27). With this result a considerable amount of computa-

tion is avoided. Computing w
′(r) H
si Rw

′(r)
si would require

M2 + M multiplications, while 1/w
′(r) H
si s requires only

M multiplications. This computational savings by a factor
of roughly M , the number of sensors (which may be quite
large), is obtained at each and every “look” direction.

5. SIMULATION RESULTS

A simulation was conducted with a uniform linear array
(half-wavelength spacing) composed of 24 elements. In
addition to a desired signal with an SNR of 10 dB, there
were 16 interferers with SNR’s ranging from 10 dB to 30
dB. The Gaussian noise was temporally and spatially white.
For each Monte Carlo run, the sample correlation matrix
was estimated from 24 snapshots. Fig. 1 plots the output
SINR associated with the desired signal obtained with both
a rank r SI-CG beamformer and a rank r SD-CG beam-
former, as a function of the value of r. It is observed that

SI-CG and SD-CG yield the same SINR at each rank dimen-
sion, as expected since we have proven they yield the same
beamformer. For purposes of comparison, the horizontal
line indicates the optimal SINR that would be obtained with
the MVDR beamformer computed from the true correlation
matrix.
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Fig. 1. SINR Performance: SI-CG vs. SD-CG

6. CONCLUSION

In this paper we proved that the low rank MVDR methods
SD-CG and SI-CG yield the same beamformer. Thus, there
is no reason to use SD-CG which is substantially more com-
plex than SI-CG due to the formation and application of
blocking matrices to the data, a different blocking matrix
for each look direction. For SI-CG, we also developed a
reduced complexity expression for computing the estimated
power arriving from a given direction.
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