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ABSTRACT
Robust adaptive beamforming is a key issue in array applications
where there exist uncertainties about the steering vector of inter-
est. Diagonal loading is one of the most popular techniques to im-
prove robustness. Recently, worst-case approaches which consist
of protecting the array’s response in an ellipsoid centered around
the nominal steering vector have been proposed. They amount
to generalized (i.e. non necessarily diagonal) loading of the co-
variance matrix. In this paper, we present a theoretical analysis
of the signal to interference plus noise ratio (SINR) for this class
of robust beamformers, in the presence of random steering vector
errors. A closed-form expression for the SINR is derived which
is shown to accurately predict the SINR obtained in simulations.
This theoretical formula is valid for any loading matrix. It provides
insights into the influence of the loading matrix and can serve as
a helpful guide to select it. Finally, the analysis enables us to pre-
dict the level of uncertainties up to which robust beamformers are
effective and then depart from the optimal SINR.

1. INTRODUCTION

Adaptive beamforming is an essential task in most systems using
an array of sensors. When the signal of interest (SOI) is present in
the measurements, the optimal beamformer is the minimum power
distortionless response (MPDR) beamformer [1] and is given, up
to a scaling factor, by R−1a. In the previous equation, R is the to-
tal covariance matrix (including the SOI and possibly interferences
and noise) while a stands for the (presumed) steering vector of the
signal of interest. In order to implement the optimal beamformer,
a needs to be known precisely, a property that is most often not
encountered in practice where there are unavoidably mismatches
between the actual steering vector and the presumed steering vec-
tor. The reasons for that are numerous: local scattering, uncertain-
ties about the direction of arrival, propagation through an inhomo-
geneous medium, fading, uncalibrated arrays, displaced sensors,
etc. These mismatches are especially detrimental when the SOI is
present in the data as the latter is considered as an interference and
thus tends to be eliminated, see e.g. [2].

Therefore robust adaptive beamforming has emerged as a nec-
essary constituent of most systems using an array of sensors. We
refer the reader to [1, Chapter 6] for a comprehensive overview.
The most widely used method, due to its simplicity and effec-
tiveness, is diagonal loading [3] which consists of adding a scaled
identity matrix to the covariance matrix prior to inversion. Inter-
estingly enough, generalized loading turns out to be the solution
to worst-case approaches recently proposed in [4–6]. In the latter
references, the beamformer is designed so as to minimize the out-
put power subject to the constraint that the beamformer’s response

be above some level for all the steering vectors which lie in an el-
lipsoid centered around the nominal or presumed steering vector
of interest. This guarantees that the signal of interest, whose steer-
ing vector is expected to lie in the ellipsoid, will not be eliminated
and hence robustness is improved. The solution to this problem
is given by (R + Q)−1

a where a denotes the nominal steering
vector (in the absence of any uncertainty) and Q stands for the
loading matrix. When the ellipsoid is a sphere the solution boils
down to diagonal loading i.e. Q ∝ I .

Through numerical simulations, this robust adaptive beam-
former was shown to perform well, at least when the size of the
ellipsoid does not grow large. However, no theoretical analysis
was provided and assessing its performance remains an open prob-
lem. The finite-sample SINR analysis of the minimum variance
distortionless beamformer (MVDR) was presented in [7] where
the probability density function (pdf) of the SINR loss (compared
to perfectly known interference plus noise covariance matrix) is
derived. Similar finite-sample SINR’s pdf analysis for the MPDR
beamformer are reported in [8], see also [9,10]. In contrast, analy-
sis of diagonally loaded versions of the MPDR is scarce. A large-
sample analysis of the weight vector and powers at the output of a
diagonally loaded MPDR can be found in [11, 12] while [13] de-
rives the pdf of the beam response when diagonal loading is used.
In this paper, we present a theoretical analysis of the SINR ob-
tained with a general loading matrix and in the presence of random
steering vector uncertainties. The formulas obtained are quite sim-
ple and are valid for any loading matrix Q (including non diagonal
or non invertible). Additionally, they are shown to predict well the
performances obtained via numerical simulations. Finally, they
can serve to provide insights into the choice of the loading matrix.

2. DATA MODEL

We consider an array composed of m sensors and assume that the
array’s output can be written as

xt = ast + nt t = 1, · · · , N (1)

where a is the actual steering vector of the source of interest, and
st is the corresponding emitted signal. We assume that a is a
complex-valued, circularly symmetric random vector with mean

E {a} = a and covariance matrix E
{

(a − a) (a − a)H
}

=

Ca. a corresponds to the steering vector without any perturba-
tion (e.g. for a perfectly calibrated array) while Ca captures the
effects of all possible errors affecting the steering vector. st is a
zero-mean random process with power P = E

{
|st|

2
}
. nt is the

noise contribution, including interferences and thermal noise. nt
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is assumed to be drawn from a zero-mean complex-valued Gaus-
sian distribution with covariance matrix C .

The robust adaptive beamformers of [4–6] (although their for-
mulations are different) are obtained as the solution to the follow-
ing minimization problem

min
w

w
H

Rw subject to
∣∣∣wH

a

∣∣∣ ≥ 1 ∀a = a + Bu; ‖u‖ ≤ 1

(2)
where R is the covariance matrix and B is a m×r matrix with full
column rank which defines an ellipsoid centered around a. Under
mild assumptions, the solution to (2) is given by (up to a scaling
factor which does not affect the SINR) w = (R + Q)−1

a with
Q = λBBH and where the Lagrange multiplier λ is obtained as
the solution of a secular equation which involves the eigenvalue
decomposition of BHR−1B, see [5] for details. Note that when
B = I the ellipsoid becomes a sphere and the solution amounts
to conventional diagonal loading.

3. SINR ANALYSIS

In this section, we provide a theoretical expression for the robust
adaptive beamformer’s average SINR. We proceed as follows. In a
first step, we assume that a is given and derive the corresponding
SINR. Then, we invoke the conditional expectation rule to com-
pute the average SINR as

SINR = Ea

{
SINR|a

}
(3)

where Ea {.} denotes the expectation with respect to (w.r.t.) the
probability density function of a and SINR|a corresponds to the
SINR for a given a. In order to obtain SINR|a , note that the
weight vector, for a given a, is given by

w|a =
(
R|a + Q

)−1
a (4)

where R|a denotes the covariance matrix for a given a. Herein we
do not consider finite-sample effects, i.e. we assume that the true
covariance matrix R|a is available. In order to introduce finite-
sample effects (and thereby to combine them with steering vector
errors), one needs to assume that the two errors are of the same
order of magnitude. In our case, this would amount to assuming
that Ca = Ca/N where Ca is fixed and N denotes the num-
ber of snapshots. We refer the reader to [14] for a detailed and
comprehensive discussion on this issue. However, this assumption
may seem arbitrary since the errors are not likely to depend on
N . Therefore, herein we consider that N is large enough so that
the steering vector errors dominate. We will however illustrate the
finite-sample behavior of (4) in the numerical simulations.

Using (4), the conditional SINR is

SINR|a =
P

∣∣wH
|a a

∣∣2
wH

|a Cw|a
=

P
∣∣∣aH

(
R|a + Q

)−1
a

∣∣∣2
aH

(
R|a + Q

)−1
C

(
R|a + Q

)−1
a

(5)
However, using (1) along with the assumptions made, one has

R|a = Paa
H + C (6)

Inserting (6) in (5) and after some straightforward algebraic ma-
nipulations, it can be shown that

SINR|a =
1

P (a − γ(a)a)H
Z (a − γ(a)a)

(7)

with

γ(a) =
1 + PaHQ̃

−1

a

PaHQ̃
−1

a
(8)

and where Q̃ = Q+C and Z = Q̃
−1

CQ̃
−1

. The average SINR
is thus given by

SINR =

∫
p(a)

P (a − γ(a)a)H
Z (a − γ(a)a)

da (9)

where p(a) is the probability density function of a. Obtaining
a closed-form expression for the previous integral appears to be
an intractable task. Hence, we prefer to approximate this integral.
Towards this end, it can be shown that for any scalar function f(a)
and assuming that a is circularly symmetric∫

f(a)p(a) da � f(a) + Tr

{
∂2f

∂a∂aH

∣∣∣∣
a

Ca

}
(10)

where Tr {.} stands for the trace of the matrix between braces. It
should be pointed out that the previous approximation does not re-
quire complete knowledge of the pdf of a but only of its mean and
covariance matrix, which is an appealing feature. We now apply
the result (10) to SINR|a . However, in the purpose of simpli-
fying subsequent derivations, we first simplify the expression of
SINR|a by approximating γ(a). More precisely, we propose to
approximate γ(a) by its statistical mean. Observing that

∂γ

∂a
=

Q̃
−1

(a − γa)

aHQ̃
−1

a
(11a)

∂2γ

∂a∂aH
=

Q̃
−1

aHQ̃
−1

a

(
I −

aaHQ̃
−1

aHQ̃
−1

a

)
(11b)

it follows, using (10) that

Ea {γ(a)} �
1 + PaHQ̃

−1

a

PaHQ̃
−1

a
+

Tr
{

Q̃
−1

Ca

}
aHQ̃

−1

a

−
aHQ̃

−1

CaQ̃
−1

a(
aHQ̃

−1

a
)2

� γ0 (12)

We propose to replace γ(a) by γ0 in (7) so that

SINR|a �
1

P (a − γ0a)H
Z (a − γ0a)

(13)

We would like to point out that using γ0 in lieu of γ(a) in (10) does
not result in a less accurate expression for the average SINR, as
will be illustrated below. The average SINR is thus approximated
by

SINR �

∫
p(a)

P (a − γ0a)H
Z (a − γ0a)

da (14)

Let f(a) = (a − γ0a)H
Z (a − γ0a) so that SINR|a � [Pf(a)]−1.

First, observe that

∂1/f

∂a
=

−1

f2

∂f

∂a

∂21/f

∂a∂aH
=

−1

f2

∂2f

∂a∂aH
+

2

f3

∂f

∂a

∂f

∂aH
(15)
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Next, using

∂f

∂a
= Z (a − γ0a) ;

∂2f

∂a∂aH
= Z (16)

along with (10), (14) and (15) yields

SINR �
1

Pf(a)
−

Tr {ZCa}

Pf2(a)
+

2 |1 − γ0|
2
aHZCaZa

Pf3(a)

f(a) = |1 − γ0|
2
a

H
Za (17)

The previous equation provides a closed-form and compact ex-
pression for the average SINR. We stress the fact that it holds for
a large class of robust adaptive beamformers as it holds for any
loading matrix Q and any steering vector error covariance matrix
Ca. As will be illustrated in the next section, it predicts very ac-
curately the average SINR obtained through Monte-Carlo simula-
tions. Hence, it can serve as a useful tool to obtain rapid insights
into the choice of the loading matrix Q without resorting to exten-
sive simulations.

4. NUMERICAL ILLUSTRATIONS AND CONCLUSIONS

The aim of this section is threefold. Firstly, we assess the valid-
ity of the theoretical formula (17) by comparing it with the actual
SINR obtained through Monte-Carlo simulations. Secondly, we
provide illustrations of up to which level of uncertainty general-
ized loading can compensate for steering vector errors and still
provide a performance close to optimum. Thirdly, we provide
rules of thumb for selecting the shape and the size of the loading
matrix. In all simulations, we consider a uniform linear array of
m = 10 sensors spaced a half-wavelength apart. The signal of in-
terest impinges from broadside and thus a =

[
1 1 · · · 1

]T
.

The noise component consists of a white noise contribution with
power σ2

n and two interferences whose DOAs are −20◦, 30◦ and
whose powers are 20dB and 30dB above the white noise level, re-
spectively. We define the uncertainty ratio (UR) and the signal

to noise ratio (SNR) as UR = 10 log10

(
Tr{Ca}

aHa

)
and SNR =

10 log10

(
P(a

H
a+Tr{Ca})

σ2
n

)
, respectively. In all simulations, the

SINR is evaluated as follows. Nr = 500 Monte-Carlo simulations
are run with a different random a and, for a given weight vector
w, the average SINR is computed as

SINR(w) =
1

Nr

Nr∑
n=1

P
∣∣wHa(n)

∣∣2
wHCw

(18)

The robust adaptive beamformer (4) -which is referred to as RB in
the figures-, will be compared to the following beamformers:

• the MVDR beamformer which is given by

wMVDR = P
{

C
−1

(
aa

H + Ca

)}
(19)

where P {.} stands for the principal eigenvector of the ma-
trix between braces.

• a (hypothetical) clairvoyant optimum beamformer which
maximizes the SINR for any given a and is thus given by

w
opt
|a = C

−1
a (20)

• the sample covariance matrix (SCM) version of (4), i.e.

wSCM =
(
R̂ + Q

)−1

a; R̂ =
1

N

N∑
t=1

xtx
H
t (21)

The performance of the SCM robust beamformer will be
evaluated by (18). It will enable us to take into account
finite-sample effects.

In a first series of simulation, we consider the case where the
steering vector errors are drawn from a zero-mean complex-valued
Gaussian distribution with covariance matrix Ca = σ2

aI . We
study the performance of the beamformers versus the uncertainty
ratio. The loading matrix Q = λI and we define the loading level

(LL) as LL = 10 log10

(
λ

σ2
n

)
. Note that it corresponds to a load-

ing level relative to the white noise power. In the simulations, LL
is chosen as LL = 5dB. The results are displayed in Figure 1.
The following observations are in order. The theoretical formula
(17) is seen to predict very accurately the SINR obtained in sim-
ulations, to within 0.2dB for UR ≤ −2dB. Hence (17) provides
a very good picture of the robust adaptive beamformer’s perfor-
mance in most situations. Moreover, the finite-sample behavior of
the robust beamformer is also close to the theoretical formula. The
robust beamformer has a performance rather close to that of the
MVDR, at least for UR’s below −6dB. For higher UR, the robust
beamformer can no longer compensate for the uncertainties; hence
one must turn to other solutions. It should be pointed out that, for
UR ≥ −6dB, the MVDR also becomes less performant than the
clairvoyant beamformer, which makes use of the actual steering
vector. This suggests that for high uncertainties the remedy would
be to obtain additional information about the actual steering vec-
tor, for instance by estimating it, rather than to protect the array’s
response over a larger and larger ellipsoid.

−20 −18 −16 −14 −12 −10 −8 −6 −4 −2 0
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opt

SINR
MVDR
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RB

SINR
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SINR
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Fig. 1. Output SINR versus uncertainty ratio. SNR = 3dB,
LL = 5dB and N = 200. Ca = σ2

aI , Q ∝ I .

Next, the influence of the loading level is studied in Figure 2.
In this figure, the loading matrix is still proportional to the identity
matrix and UR = −6dB. Again, it can be seen that the theoretical
SINR is very close to the practical SINR. Also, it can be observed

II - 171

➡ ➡



0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3
 Output SINR

 Relative loading level (dB)

 d
B

SINR
opt

SINR
MVDR

SINR
RB

SINR
SCM

SINR
th

Fig. 2. Output SINR versus loading level. SNR = 3dB, UR =
−6dB and N = 200. Ca = σ2

aI , Q ∝ I .

that, despite LL has an influence onto the final SINR, there exist a
large range of values for LL which provide a similar performance.

Finally, we study the influence of the shape of the loading ma-
trix which is directly related to the form of the ellipsoid in (2).

Intuitively, since E
{

(a − a) (a − a)H
}

= Ca, it follows that a

can be written as a = a+C
1/2
a u with C

1/2
a a square-root of Ca.

This suggests that B should be related to C
1/2
a , or equivalently

that Q ∝ Ca. Hence, we check whether this intuitive hypothesis
results in a better performance than using diagonal loading only.
Towards this end, we consider the case of local scattering for which
the steering vector cas be written as a = a + 1√

L

∑L
k=1

gka(θ̃k)

where gk are zero-mean, independent and identically distributed
random variables with power σ2

g and θ̃k are independent random

variables with pdf p(θ̃). The covariance matrix of the errors is
given by

Ca = σ2
g

∫
a(θ̃)aH(θ̃)p(θ̃) dθ̃ = σ2

gC̆a (22)

In the simulations presented below, we assume a Gaussian dis-
tribution for the scatterers with standard deviation (referred to as
angular spread in the literature) σθ = 15◦. For each value of UR,

we consider both Q = λI and Q = λC̆a (note that Tr
{

C̆a

}
=

Tr {I}) and we look for the value of λ that results in the opti-
mal average SINR in (17). We plot in Figure 3 the obtained op-
timum SINR. Examination of this figure reveals that the perfor-
mance obtained with Q ∝ Ca is always inferior to that obtained
with Q ∝ I . So, even if the steering vector covariance matrix is
not a scaled identity matrix, there is no gain in using Q ∝ Ca

instead of diagonal loading. Note also, as discussed in [5], that
choosing Q ∝ Ca implies that one has a strong a priori on the
shape of the errors, which is seldom the case. Hence, robustness
may be endangered if Q is chosen as Q ∝ Ca whereas the true
covariance matrix of the steering vector errors is not Ca. This
provides an additional argument in favor of diagonal loading.
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Fig. 3. Coherent local scattering. Optimum SINR obtained with
the robust beamformer versus uncertainty level. SNR = 3dB.
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