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ABSTRACT

We consider the problem of source number estimation in the
presence of unknown spatially nonuniform noise. Successive ar-
ray element suppression is applied to isolate the contribution of
the noise powers and a likelihood function is derived. When it
is combined with the appropriately defined penalty function, an
MDL-like criterion is defined. Performance of the new criterion
is assessed through simulations and it is shown that the method is
powerful in a nonuniform noise environment.

1. INTRODUCTION

Source number detection is a critical problem in array signal pro-
cessing as it is prerequisite for signal parameter estimation algo-
rithms. It finds applications in wireless communications, RADAR,
SONAR and seismic exploration [1, 2]. Several detection schemes
with a number of variants have been continuously proposed and
analyzed in the literature, ranging from methods based on hypoth-
esis testing [3, 4] to information theoretic criteria [5, 6]. Most
detectors apply for different assumptions on the data, especially
with respect to the correlation among the sources and/or the noise.
In all cases, the noise is always assumed to be spatially uniform.
This uniformity makes it possible to fully exploit the informa-
tion embedded in the eigenvalues of the covariance matrix of data
and the detectors use test statistics or goodness-of-fit terms which
are functions of the eigenvalues. However, when the noise is not
uniform, i.e., when the noise powers are different from one sen-
sor to another, most of the detectors fail to perform satisfactorily
and few dedicated detection techniques are available. A number
of instances where nonuniform noise occurs are mentioned in [7]
and a model highlighting its structure was addressed for the prob-
lem of estimation where the number of sources is known in ad-
vance. A more adapted information theoretic criterion based on
Gerschgorin’s theorem was proposed in [6] where the detection is
not solely based on the eigenvalues. Although it is suggested the
the scheme can be applied to nonuniform noise, it can be shown
that the same limitations apply due to the misleading contribution
of the unordered eigenvalues, resulting in erroneous detection.

In what follows, we propose an alternative detection criterion
by deriving a new likelihood function. The method copes with
the spatial non-uniformity of the noise by successively eliminating
the contribution of single elements from the array. When associ-
ated with the appropriate penalty function, the derived likelihood
function results in an MDL criterion. The proposed Non-Uniform
MDL (NU-MDL) is suitable for both nonuniform noise and the
special case of uniform noise.

2. DATA MODEL

Consider an array of M sensors receiving p narrow-band signals
from coplanar sources with unknown DOAs, θ = [θ1, θ2,. . ., θP ]T ,
where (.)T stands for matrix transpose. The number of sources p
is to be estimated. The received signal vector at instant i can be
modeled as [7, 8]

x(i) = A(θ)s(i) + n(i), i = 1, . . . , L (1)

where
A(θ) = [a(θ1),a(θ2), . . . , a(θp)] (2)

is the (M × p)-dimensional steering matrix, a(θq); q = 1, . . . , p
are the vectors of the array response to the signal directions, s(i)
is the p-dimensional vector of the source signals and n(i) is the
M -dimensional vector of white sensor noise.

Sensor noise is assumed to be a zero-mean spatially and tem-
porally white Gaussian process with an unknown covariance ma-
trix Q satisfying the following structure

Q = E
{
n(i)nH(i)

}
= diag {q} (3)

where (.)H denotes matrix Hermitian transpose, E(.) stands for
expectation, q = [σ2

1 , σ2
2 , . . . , σ2

M ]T and diag {q} is a diagonal
matrix with elements elements of the vector q.

The source signals and the noise are assumed to be uncorre-
lated. The array covariance matrix is therefore given by

R = E
{
x(i)xH(i)

}
= A(θ)RsA

H(θ) + Q (4)

where Rs = E
{
s(i)sH(i)

}
is the source signal covariance ma-

trix. The received signal waveforms are assumed to be a random
zero-mean Gaussian process [8, 7], satisfying x(i) ∼ N (0,R).

3. DETECTION SCHEME

3.1. Covariance Matrix Transformation

Similarly to [6], we introduce a unitary covariance matrix trans-
formation based on array element suppression. For simplicity and
without loss of generality, we discard the M -th element of the ar-
ray. The resulting (M − 1) × p dimensional steering matrix is
therefore

AM (θ) = [aM (θ1),aM (θ2), . . . , aM (θp)] (5)

where the vectors aM (θp) are the same as in (2) with the M -th
element removed. Similarly to (4), the covariance matrix of the
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collected data over the reduced (M −1)-element array is given by

RM = AM (θ)RsA
H
M (θ) + QM (6)

where the reduced noise covariance matrix QM is defined as

QM = diag {qM} (7)

with qM = [σ2
1 , σ2

2 , . . . , σ2
M−1]

T . Note that

R =

[
RM r
rH rMM

]
(8)

where rMM is the (M, M)-th element of R and

r = AM (θ)Rsb
H
M (9)

with bM being the removed M -th row of A(θ).
The reduced covariance matrix RM has the following eigen-

decomposition
RM = EDEH (10)

with
E = [e1, . . . , eM−1] (11)

D = diag {λ1, . . . , λM−1} (12)

where λm and em, m = 1, . . . , M − 1, are the eigenvalues and
their corresponding eigenvectors, respectively.

A unitary matrix U is defined as follows

U =

[
E 0
0T 1

]
(13)

where 0 is an (M − 1)-dimensional vector of zero elements and
E is defined in (12). Applying transformation U to the covariance
matrix R leads to

R = UHRU (14)

=

[
EHRME EHr

rHE rMM

]

=

[
D c
cH rMM

]
(15)

Let |c1| ≥ |c2| ≥ . . . ≥ |cM−1| be the magnitudes of the
elements of vector c in (15). From (9), note that the m-th element
cm, has the following structure

cm = eH
mAM (θ)Rsb

H
M (16)

Moreover, due to the fact that the noise subspace is orthogonal to
the direction matrix AM (θ), the elements cm satisfy the following

cm

{
= 0, if em is a noise eigenvalue,
�= 0, if em is a signal eigenvalue.

(17)

Thus, based on the information contained in the elements cm,
m = 1, . . . , M − 1, it is possible to separate the noise and signal
subspaces. In other words,

|c1|≥|c2| ≥. . .≥ |cp|≥|cp+1| = |cp+2|= . . .= |cM−1|=0 (18)

3.2. Geometric Interpretation

The elements cm of relation (18) can be interpreted as the pro-
jection of the M -th column of R onto the m-th eigenvector, em,
of RM . Also, from Gerschgorin’s theorem [10], the first M − 1
eigenvalues of the transformed covariance matrix R are the cen-
ters of the corresponding Gerschgorin disks, whose radii ρm, m =
1, . . . , M −1, are given by the magnitude of the corresponding el-
ements cm, i.e., ρm = |cm|. The value of these radii indicates the
multiplicity of the eigenvalues and the subspaces that their eigen-
vectors span [6, 10]. It is clear from (14) that two distinct subsets
of disks are easily identifiable, representing the signal subspace
for the first p radii, |c1|, . . . , |cp|, and the noise subspace for the
smallest and equal M − 1 − p radii, |cp+1|, . . . , |cM−1|.

3.3. Source Number Estimation
As the noise is not spatially uniform, it is not possible to order the
eigenvalues of the covariance matrix of the data for source detec-
tion. Instead we use the information provided by the elements of
vector c as it is defined in (15).

Under the Gaussianity assumption of the data, it is easily shown
that the stochastic negative Log-Likelihood (LL) function of the
observed data is [9]

L(η) = L ln {det [R(η)]} + trace
{
R−1(η)R̂

}
(19)

where η = [p, θT ,pT ,qT ]T is the vector of unknown parameters,
with p = [�(Rs),�(Rs)] and R̂ is the sample covariance matrix
of the data, given by

R̂ =
1

L

L∑
i=1

x(i)xH(i) (20)

Recalling that the transformation matrix U is unitary, i.e., UUH=
I, where I denotes the identity matrix, we can replace R in (19) by
the transformed covariance matrix R defined in (14), and obtain
the following modified negative LL cost function

L(p) = L ln {det [R(p)]} + trace
{

R−1(p)R̂
}

(21)

where R̂ = UR̂UH .
From (15), using properties of (2 × 2)-block matrices, it is

straight forward to show that

det {R(p)} = det {D} det
{

rMM − cHD−1c
}

(22)

Exploiting the fact that matrix D is diagonal, and from (12) and
(18), the above equation becomes

det {R(p)} =

(
M−1∏
m=1

λm

) (
rMM −

p∑
m=1

|cm|2
λm

)
(23)

On the other hand, using (14), it is also straight-forward to show
that

trace
{

R−1(p)R̂
}

= trace
{
UHR−1(p)R̂U

}
= trace

{
R−1(p)R̂

}
≈ M (24)

Using (23) and (24) and omitting terms independent of p, the
negative LL function reduces to

L(p) = L ln

(
rMM −

p∑
m=1

|cm|2
λm

)
(25)
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The obtained LL is a monotonic function of the squared magni-
tudes of elements cm, m = 1, . . . , p. Note that only these ele-
ments provide the necessary information for the estimation of the
number of sources p. The corresponding eigenvalues λm, m =
1, . . . , p, only play the role of weighting factors. It is also impor-
tant to note that this function is decreasing with p and it describes
the goodness-of-fit part for the detection criterion. The number of
free parameters in the negative LL function (25) is clearly p for the
elements cm, and p2 for the signal subspace which translates to the
rank condition on R or RM [6] . Following the development in
[1], a penalty function can be applied leading to an information
theoretic criterion for automatic source number estimation. More
specifically, a Minimum Description Length (MDL) criterion can
be formulated as follows

NU-MDLM (p) = L(p) + P (p) (26)

where subscript M corresponds for the M -th removed array ele-
ment and the penalty function P (p) is defined as

P (p) =
1

2
(p + p2) ln{L} (27)

3.4. Comparison with Gerschgorin MDL

A similar idea, namely the Gerschgorin MDL (GMDL), was pre-
sented in [6] for uniform noise. The GMDL criterion applies the
same penalty function as (27) and its goodness-of-fit part has the
following expression

L(p) = L(M − 1 − p) ln

⎧⎪⎨
⎪⎩

(∏M−1
m=p+1 λm

)1/(M−1−p)

1
M−1−p

∑M−1
m=p+1 λm

⎫⎪⎬
⎪⎭

−L ln

(
rMM −

p∑
m=1

|cm|2
λm

)
(28)

As compared to (25), this function contains an extra part in ad-
dition to the contribution of the elements of c as seen previously.
This extra part is a monotonic function of the ratio of the geomet-
ric mean of the noise eigenvalues to the corresponding arithmetic
mean. When the noise is uniform, the smallest M−1−p eigenval-
ues in (12) are equal and their corresponding eigenvectors span the
noise subspace. This information can be successfully used to sep-
arate the noise and the signal subspaces. However, when the noise
is nonuniform, the eigenvalues can no longer be used directly for
subspace separation. Moreover, application of the GMDL criterion
to nonuniform noise results in an erroneous detection which will
be confirmed through simulation results. On the other hand, our
proposed NU-MDLM (26) does not select the number of sources
through the ordered eigenvalues λm, m = 1, . . . , M − 1, but uses
only the elements of c. It is worth noting that although the NU-
MDL criterion applies to nonuniform noise and the special case of
uniform noise, it is not a generalization of the GMDL criterion.

3.5. Averaged NU-MDL

Since the noise powers are not equal from one sensor to another,
accuracy of the NU-MDLm detector depends on the index of the
particular array element to be removed. It is clear that M distinct
NU-MDLm criteria can be obtained from the same array and an
improved detector can be formulated by averaging the result over
the M detectors as follows
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(b) Uniform noise.

Fig. 1. Comparison between NU-MDL and GMDL vs SNR.

NU-MDL(p) =
1

M

M∑
m=1

NU-MDLm(p) (29)

The above criterion involves M times the eigen-decomposition of
an (M − 1)× (M − 1)-dimensional covariance matrix and it is of
the same order of complexity as the averaged GMDL criterion [6].

4. SIMULATION RESULTS

In what follows we show the global performance of the NU-MDL
detector and compare it to GMDL. For the simulations, a Uniform
Linear Array (ULA) is assumed with M = 8 sensors. The true
number of sources is p = 2. In the examples labeled (a), the noise
powers are given by q = [3.3, 2.6, 5.2, 1.2, 4.1, 5.0, 3.2, 6.0]T ,
therefore the Worst Noise Power Ratio (WNPR) as defined in [7] is
WNPR=20. In the examples labeled (b), the noise is uniform over
the sensors. All the examples illustrate the empirical probability
of correct detection resulting from 200 Monte-Carlo runs.

Figure 1 illustrates the performance with respect to the Sig-
nal to Noise Ratio (SNR). The fixed parameters are the number
of snapshots L = 100 and the angles of arrival θ = [0◦, 25◦]T ,
whereas the SNR is set to vary from −20 dB to 30 dB. It is clear
that NU-MDL outperforms GMDL in nonuniform noise as the lat-
ter relies on the misleading order of the eigenvalues. In the uni-
form noise case however, GMDL uses both the Gerschgorin radii
and the eigenvalues to retrieve the number of sources, and there-
fore performs better than NU-MDL. Observe that for relatively
high SNR (> 0 dB), NU-MDL applies to uniform noise despite
the fact that it is derived for nonuniform noise. For both detectors,
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Fig. 2. Comparison between NU-MDL and GMDL vs L.

the averaged version exhibits better results over the ’delete-one’
detectors.

Figure 2 illustrates the performance with respect to the number
of snapshots L which varies from 0 to 120. The fixed parameters
are SNR=10 dB and the angles of arrival θ = [0◦, 25◦]T . Similar
comments as for the previous examples apply.

Figure 3 illustrates the performance with respect to the angu-
lar resolution ∆θ. The fixed parameters are SNR=10dB and the
number of snapshots L = 100. The first angle of arrival is fixed
at θ1 = 0◦ whereas the second one, θ2, varies from 0◦ to 9◦. The
relative performances of NU-MDL and GMDL are similar to the
previous examples.

5. CONCLUSION

A source detection algorithm, the Non-Uniform MDL (NU-MDL),
has been proposed for a nonuniform noise environment. The de-
tector applies a transformation of the covariance matrix of the data,
resulting from array element suppression to cope with different
noise powers. Through simulations, we show the high power of the
method to detect sources in nonuniform noise. The results show
the applicability to the simpler case of uniform noise as compared
to the Gerschgorin MDL (GMDL).
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