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ABSTRACT
We develop a new linear estimator for estimating an unknown vec-
tor x in a linear model, in the presence of bounded data uncertain-
ties. The estimator is designed to minimize the worst-case regret
across all bounded data vectors, namely the worst-case difference
between the MSE attainable using a linear estimator that does not
know the true parameters x, and the optimal MSE attained using a
linear estimator that knows x. We demonstrate through several ex-
amples that the minimax regret estimator can significantly increase
the performance over the conventional least-squares estimator, as
well as several other least-squares alternatives.

1. INTRODUCTION

We consider the generic problem in which we seek to estimate an
unknown deterministic parameter vector x in the linear model

y = Hx + w, (1)

where H is a known matrix and w is a noise vector. Estimation
problems of this form arise in many different fields in science and
engineering, and consequently have attracted much attention in the
estimation literature.

Since the MSE of a linear estimator x̂ of x will in general de-
pend on the unknown vector x, we cannot design a linear estimator
to minimize the MSE. Instead, a common approach is to seek lin-
ear estimators that minimize some function of the data error ŷ−y,
where ŷ = Hx̂ is the estimated data vector. The celebrated least-
squares (LS) estimator seeks the estimator x̂ of x that minimizes
the squared-norm of the data error ‖ŷ−y‖2. It is well known that
the LS estimate has the smallest variance among all linear unbi-
ased estimators. On the negative side, an unbiased estimator does
not necessarily lead to a small MSE. In fact, in many cases the
LS estimator can result in a large MSE. Various modifications of
the LS estimator have been proposed, including Tikhonov regular-
ization [1], the linear shrunken estimator [2], and the covariance
shaping LS estimator [3]. In general, these LS alternatives attempt
to reduce the MSE in estimating x by allowing for a bias. Each
of the estimators above can be shown to be a solution to an opti-
mization problem which involves minimizing some function that
depends on the data error.

In an estimation context, we typically would like to minimize
the estimation error, rather than the data error. To this end we
assume that x is known to satisfy a (possibly weighted) norm con-
straint, and then seek a robust estimator whose performance is rea-
sonably good across all possible choices of the parameters x, in
the region of uncertainty. The most common approach for design-
ing robust estimators is the minimax MSE approach, in which we
seek the estimator that minimizes the worst-case MSE in the re-
gion of uncertainty. The minimax approach, in which the goal is

to optimize the worst-case performance, is one of the major tech-
niques for designing robust systems with respect to modelling un-
certainties, and has been applied to many problems in detection
and estimation [4, 5].

Following the popular minimax approach, we may seek the
linear estimator that minimizes the worst-case MSE over all possi-
ble values of x that satisfy a weighted norm constraint. The min-
imax estimator of this form for arbitrary matrices H and arbitrary
noise vectors w, is developed in [6], in which the case of uncer-
tainties in the model matrix H is also considered.

Although the minimax approach has enjoyed widespread use
in the design of robust methods for signal processing and commu-
nication, its performance is often unsatisfactory. The main lim-
itation of this approach is that it tends to be overly conservative
since it optimizes the performance for the worst possible choice of
unknowns. As we show in the context of a concrete example in
Section 4, this can often lead to degraded performance.

To improve the performance of the minimax MSE estimator,
we propose, in Section 2, a new approach to linear estimation, in
which we seek a linear estimator whose performance is as close as
possible to that of the optimal linear estimator, i.e., the one mini-
mizing the MSE when x is assumed to be known. Specifically, we
seek the estimator that minimizes the worst-case regret, which is
the difference between the MSE of the linear estimator which does
not know x, and the smallest attainable MSE with a linear estima-
tor that knows x. Note that as we show in Section 2, since we are
restricting ourselves to linear estimators, we cannot achieve zero
MSE even in the case in which the parameters x are known. By
considering the difference between the MSE and the optimal MSE
rather than the MSE directly, we can counterbalance the conserva-
tive character of the minimax approach, as is evident in the exam-
ples we consider in Section 4. Some special cases of the minimax
regret estimator for different choices of the weighting matrix are
considered in Section 3.

Proofs of theorems, which are omitted here for brevity, can be
found in [8].

2. MINIMAX REGRET ESTIMATOR

We denote vectors in �m by boldface lowercase letters and matri-
ces in �n×m by boldface uppercase letters. The Hermitian conju-
gate of a matrix is denoted by (·)∗.

Consider the problem of estimating the unknown deterministic
parameter vector x in the linear model (1), where H is a known
n × m matrix with full rank m, and w is a zero-mean random
vector with covariance Cw. We assume that x is known to satisfy
the weighted norm constraint ‖x‖T ≤ L for some positive definite
covariance T and scalar L > 0, where ‖x‖2

T = x∗Tx.
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We estimate x using a linear estimator so that x̂ = Gy for
some m × n matrix G. The MSE of x̂ is given by

E(‖x̂−x‖2) = Tr(GCwG∗)+x∗(I−GH)∗(I−GH)x. (2)

Since the MSE depends on the unknown parameter vector x, we
cannot choose an estimate to directly minimize the MSE (2).

Instead, we seek the linear estimator that minimizes the worst-
case regret R(x,G), which is the difference between the MSE of
an estimator x̂ = Gy of x, and the best possible MSE attainable
using any estimator of the form x̂ = G(x)y where x is assumed
to be known, so that G can depend explicitly on x. As we now
show, since we are restricting ourselves to linear estimators of the
form x̂ = Gy, even in the case in which the parameters x are
known we cannot achieve zero MSE. The best possible MSE is
illustrated schematically in Fig. 1. Instead of seeking an estimator
to minimize the worst-case MSE, we therefore propose seeking an
estimator to minimize the worst-case difference between its MSE
and the best possible MSE, as illustrated in Fig. 1.

Fig. 1. The line represents the best attainable MSE as a function
of x when x is known, and the dashed line represents a desirable
graph of MSE with small regret as a function of x, using some
linear estimator that does not depend on x.

To develop the minimax regret estimator, we first determine
the best attainable MSE, which we denote by MSEo. To this end,
we seek the estimator x̂ = G(x)y that minimizes the MSE when
x is known. Differentiating the MSE of (2) with respect to G and
equating to 0, the optimal G(x) is

G(x) = xx∗H∗(Cw + Hxx∗H∗)−1

=
1

1 + x∗H∗C−1
w Hx

xx∗H∗C−1
w , (3)

where we used the Matrix Inversion Lemma [7]. Substituting G(x)
back into (2), MSEo is given by

MSEo =
x∗x

1 + x∗H∗C−1
w Hx

. (4)

Since x is unknown, we cannot implement the optimal estima-
tor (3). Instead we seek the estimator x̂ = Gy that minimizes the
worst-case regret R(x,G) subject to the constraint ‖x‖T ≤ L.
Thus, we seek the matrix G that is the solution to the problem

min
G

max
x∗Tx≤L2

R(x,G), (5)

where

R(x,G) = E(‖Gy − x‖2) − MSEo =

= Tr(GCwG∗) + x∗(I − GH)∗(I − GH)x −
− x∗x

1 + x∗H∗C−1
w Hx

. (6)

For analytical tractability, we restrict our attention to weighting
matrices T such that T and H∗C−1

w H have the same eigen-
vector matrix. Thus, if H∗C−1

w H has an eigendecomposition
H∗C−1

w H = VΣV∗ where V is a unitary matrix and Σ is a
diagonal matrix, then T = VΛV∗ for some diagonal matrix Λ.
Under this assumption, the form of the minimax regret estimator
is given by the following theorem [8].

Theorem 1 Let x denote the unknown deterministic parameter
vector in the model y = Hx + w, where H is a known n × m
matrix with rank m, and w is a zero-mean random vector with
covariance Cw. Let H∗C−1

w H = VΣV∗ where V is a unitary
matrix and Σ is an m×m diagonal matrix with diagonal elements
σi > 0 and let T = VΛV∗ where Λ is an m×m diagonal matrix
with diagonal elements λi > 0. Then the solution to the problem

min
x̂=Gy

max
‖x‖T≤L

�
E(‖x̂ − x‖2) − min

x̂=G(x)y
E(‖x̂ − x‖2)

�

has the form

x̂ = VDV∗(H∗C−1
w H)−1H∗C−1

w y,

where D is an m × m diagonal matrix with diagonal elements di

which are the solution to the convex optimization problem

min
τ,di

τ

subject to �m
i=1

d2
i

σi
≤ τ

Φ({di}) +
�m

i=1

d2
i

σi
≤ τ

where

Φ({di}) = max
si≥0,

�
i λisi=L2

�
m�

i=1

(1 − di)
2si −

�m
i=1 si

1 +
�m

i=1 σisi

�
.

Theorem 1 reduces the problem of minimizing the regret to a
simpler convex optimization problem in m unknowns. In the next
section we show that for certain choices of the weighting matrix T,
the problem can be further simplified, and in some cases a closed
form solution for the minimax regret estimator exists.

3. MINIMAX REGRET ESTIMATOR FOR SPECIAL
CHOICES OF T

We now consider two choices of T which simplify the optimiza-
tion problem of Theorem 1.

Suppose first that T = H∗C−1
w H. This case may be of in-

terest, for example, when an unknown signal x is sent through a
known channel, and the output signal-to-noise ratio is bounded.
As we show in Theorem 2 below, when L is large enough with
respect to m, the optimal minimax regret estimator in this case is
a shrunken estimator proposed by Mayer and Willke [2], which is
simply a scaled version of the LS estimator, with a specific choice
of shrinkage factor. For small values of L, the optimal estimator
is given in terms of a single parameter, which is the solution to a
nonlinear equation.
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Theorem 2 Let x denote the unknown deterministic parameter
vector in the model y = Hx + w, where H is a known n × m
matrix with rank m, and w is a zero-mean random vector with
covariance Cw. Let H∗C−1

w H = VΣV∗ where V is a unitary
matrix and Σ is an m × m diagonal matrix with diagonal ele-
ments σ1 ≥ . . . ≥ σm > 0. Then the minimax regret estimator
with T = H∗C−1

w H is given by

x̂ =

� �
1 −

�
1

1+L2

�
(H∗C−1

w H)−1H∗C−1
w y, L2 ≥ α;

VDV∗(H∗C−1
w H)−1H∗C−1

w y, L2 < α,

where α = (m − 1)2 − 1, and D is an m × m diagonal matrix
with diagonal elements di that are given by

di =

�
0, i ≤ k(ρ∗);
1 −�ρ∗σi + 1/(L2 + 1), i ≥ k(ρ∗) + 1.

Here ρ∗ is the unique positive root of

φ(ρ) =

m�
i=1

σiγi(ρ) − L2,

where γi(ρ) is defined by

γi(ρ) = max

�
1

σi

�
1�

ρσi + 1/(L2 + 1)
− 1

	
, 0



,

and

k(ρ∗) =

�
0, γ1(ρ∗) > 0;
max {i : γi(ρ∗) = 0} , otherwise.

As we expect intuitively, when L → ∞, the minimax regret
estimator x̂ of Theorem 2 reduces to the LS estimator. Indeed,
when the weighted norm of x can be made arbitrarily large, the
MSE, and therefore the regret, will also be arbitrarily large unless
the bias is equal to zero. Therefore, in this limit, the worst-case
regret is minimized by choosing an estimator with zero bias that
minimizes the variance, which leads to the LS estimator.

We next consider the case in which T = I, which may be
of interest when an unknown signal x is sent through a known
channel, and the power of x is bounded. Theorem 3 below shows
that in this case the minimax regret estimator can be determined
by solving m convex optimization problems, each in 3 unknowns.

Theorem 3 Let x denote the unknown deterministic parameter
vector in the model y = Hx + w, where H is a known n × m
matrix with rank m, and w is a zero-mean random vector with
covariance Cw. Let H∗C−1

w H = VΣV∗ where V is a unitary
matrix and Σ is an m × m diagonal matrix with diagonal ele-
ments σ1 ≥ . . . ≥ σm > 0. Then the minimax regret estimator
with T = I has the form

x̂ = VDV∗(H∗C−1
w H)−1H∗C−1

w y,

where D is an m × m diagonal matrix with diagonal elements di

that are given by

di =

�
1 −√

λ − σiµ, i ≤ k;
0, i ≥ k + 1,

with k = arg min τ�, µ = µk and λ = λk. Here τ�, µ� and λ� for
1 ≤ � ≤ m are the optimal solutions to

min
τ,µ,λ

τ

(k�,1, k�,2) a� φ�

(1,1) 1.0681 2.1438
(2,1) 0.8704 3.3557
(1,2) 1.2027 4.5686
(2,2) 1.0466 1.9433
(3,2) 0.9449 5.2684

Table 1. Simulation parameters.

subject to

��
i=1

�
1−

√
λ−σiµ

�2

σi
≤ τ

−2L
√

µ + µ + L2λ +
��

i=1

�
1−

√
λ−σiµ

�2

σi
≤ τ

σ1µ ≤ λ ≤ 1 + σ�µ
µ ≥ 0

if � < m then λ ≥ 1 + σ�+1µ.

As before, we can readily show that when L → ∞, the minimax
regret estimator of Theorem 3 reduces to the LS estimator.

4. EXAMPLE

We now present an example, illustrating the performance advan-
tage of the minimax regret estimator.

We consider the problem of estimating a 2D image from noisy
observations, which are obtained by blurring the image with a 2D
filter, and adding random Gaussian noise. The image x(z1, z2) is
chosen as a sum of m harmonic oscillations:

x(z1, z2) =

m�
�=1

a� cos(ω�,1z1 + ω�,2z2 + φ�), (7)

where ω�,i = 2πk�,i/n, and k�,i ∈ �
2 are given parameters.

Clearly, the image x(z1, z2) is periodic with period n. Therefore,
we can represent the image by a length-n2 vector x, with compo-
nents {x(z1, z2) : 0 ≤ z1, z2 ≤ n − 1}.

The observed image y(z1, z2) is given by

y(z1, z2) =
�
τ1,τ2

H(τ1, τ2)x(z1−τ1−d1, z2−τ2−d2)+σw(z1, z2),

where H(z1, z2) is a blurring filter defined by

H(z1, z2) = max

�
1 −

�
z2
1 + z2

2

ρ
, 0

	
, (8)

for some parameter ρ, d1 and d2 are randomly chosen shifts, and
w(z1, z2) is an independent, zero-mean, Gaussian noise process
so that for each z1 and z2, w(z1, z2) is N (0, 1). By defining the
vectors y and w with components y(z1, z2) and w(z1, z2), re-
spectively, and defining a matrix H with the appropriate elements
H(z1, z2), the observations y can be expressed in the form (1).

In Fig. 2 we consider the case in which m = 5, n = 128, σ =
0.5, L = ‖x‖, and nρ =

√
2. The values of k�,i, a� and φ� are

given in Table 1. To estimate the image x(z1, z2) from the noisy
observations y(z1, z2) we consider 4 different estimators: The LS
estimator, the minimax regret (RGR) estimator of Theorem 3, and
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Estimator Relative Error

LS 5.0e8
MMX 1.00
WNR 6.17
RGR 0.843

Table 2. Relative error for the data of Table 1.

two other estimators, the deterministic Wiener estimator (WNR),
and the minimax estimator (MMX), which we now describe.

The LS estimator does not incorporate the knowledge on σ and
L = ‖x‖. To develop an estimator that incorporates this knowl-
edge, we may assume that x is a random vector with covariance
L2I independent of w, and design a minimum MSE Wiener esti-
mator matched to this covariance. The resulting estimator is

x̂ =

�
H∗H +

σ2

L2
I

�−1

H∗y. (9)

The minimax estimator minimizes the worst-case MSE over
all x∗x ≤ L2, and is given by [6]

x̂ =
L2

L2 + γ0
(H∗C−1

w H∗)−1H∗C−1
w y, (10)

where γ0 = Tr
��

H∗C−1
w H

�−1
�
.

In Table 2 we report the relative error ε = ‖x̂ − x‖/‖x‖ cor-
responding to the 4 estimators. The performance of the LS, mini-
max, and Wiener estimators are severely degraded. The surprising
result is that even though in this example H is ill-conditioned, the
minimax regret estimator works pretty well, as can be seen from
the results of Table 2, as well as in Fig. 2. Since the error in the LS
estimate is so large, we do not show the resulting image.
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Fig. 2. Comparison of the minimax regret estimator of Theorem 3,
and the least-squares, Wiener, and minimax estimators.
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