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ABSTRACT

This paper presents a tree-structured subspace-based algorithm for
joint estimation of the directions of arrival (DOAs) and frequen-
cies of arrival (FOAs) in wireless communication systems. The
proposed approach is a hybrid of one-dimensional (1-D) subspace-
based algorithms and spatial/temporal filtering processes, both of
which are invoked alternatively to enhance the estimation accu-
racy. Two temporal and one spatial 1-D subspace-based algo-
rithms are employed alternatively to estimate the FOAs and the
DOAs, respectively. Between these subspace-based algorithms,
a constrained temporal filtering process and a constrained spatial
beamforming process are addressed, which minimize the filtered
noise power under a set of linear constraints. These filtering pro-
cesses aim to effectively partition the incoming rays and to be
robust against the propagation errors in the tree-structured esti-
mation scheme so that the overall performance can be enhanced.
Furthermore, the estimated FOAs and DOAs are automatically
paired without extra computational overhead. Furnished simula-
tions show that the new approach can provide comparable perfor-
mance with reduced complexity compared with previous works.

1. INTRODUCTION

It is of importance to estimate the parameters embedded in the
received signal in wireless communication systems. For example,
a precise estimation of the DOA and center of the frequencies of
signals can provide exact information of users for further signal
processing. As such, joint DOA-FOA estimation has received a
flurry of attention recently.

The direct maximum likelihood approach, however, is in gen-
eral computationally prohibitive. For this, various algorithms for
joint DOA-FOA estimation have been addressed. For example, a
two-dimensional (2-D) MUltiple SIgnal Classification (MUSIC)-
based algorithm was considered in [1], which, however, estimates
the parameters via carrying out high dimensional eigendecompo-
sitions of the covariance matrices and, in addition, requires a 2-
D search on the DOA-FOA plane, thus still calling for enormous
computations. To alleviate the computational overhead, several 1-
D Estimation of Signal Parameters via Rotational Invariance Tech-
nique (ESPRIT)-based algorithms have been proposed. A 1-D
ESPRIT-based algorithm was suggested in [2], which, however,
needs a special array configuration. Another 1-D ESPRIT-based
algorithm was advocated recently in [3]. Despite its high resolu-
tion capability, it still calls for higher dimensional singular value
decomposition (SVD) apart from an extra pairing procedure to
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group the separately estimated parameters. On the other hand, [4]
makes use of two 1-D ESPRIT algorithms to estimate the parame-
ters separately with a marked subspace technique to overcome the
pairing problem, but it can not resolve closely spaced signals.

This paper, we address a low complexity, yet high accuracy
tree-structured subspace-based algorithm to jointly estimate the
DOAs and FOAs in wireless communication systems. The pro-
posed approach is a hybrid of the 1-D subspace-based algorithms
and spatial/temporal filtering processes, both of which are invoked
alternatively to enhance the estimation accuracy. More specifi-
cally, the proposed approach consists of three 1-D subspace-based
algorithms, in which the two temporal and one spatial 1-D subspace-
based algorithms are employed alternatively to estimate the FOAs
and the DOAs, respectively. Between these subspace-based algo-
rithms, a constrained temporal filtering process and a constrained
spatial beamforming process are addressed, which determine the
weights based on the linear constrained minimum variance (LCMV)
criterion [5]. These filtering processes aim to effectively partition
the incoming rays and to be robust against the propagation errors
in the tree-structured estimation scheme so that the overall perfor-
mance can be enhanced. Furthermore, the estimated FOAs and
DOAs are automatically paired without extra computational over-
head. Furnished simulation results show that the new approach
can provide comparable performance but with reduced complexity
compared with previous works.

2. SYSTEM MODEL

Consider a uniform linear array (ULA) with P omni-directional
antennas. Assume that there are K uncorrelated narrowband sources
sk(t), which are carried by the center frequencies fk, k = 1, · · · , K,
impinging on the ULA. The observed signal at the ith antenna el-
ement is given by

xi(t) =

K∑

k=1

ai(θk)sk(t)ej2πfkt + ni(t), i = 1, ..., P (1)

where ai(θk) = e−j2πfkd(i−1)sinθk/c denotes the ith antenna re-
sponse to the signal from the direction θk, c is the wave propa-
gation speed and d is the distance between the adjacent antennas.
After sampling the output of each antenna at a rate fs = 1/Ts,
and collecting L consecutive temporal samples, we can obtain the
data matrix given by

X(t) = AsS(t)AH
t + N(t) (2)

where we have used the fact that sk(t)′s remain roughly the same
for all t’s due to the narrowband assumption [3], X(t) = [x(t),x(t−
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Ts), ...,x(t−(L−1)Ts)] with x(t) = [x1(t), ..., xP (t)]T ], As =

[as(µ1),as(µ2), ..., as(µK)], in which as(µ) = [1, ..., e−(P−1)µ]
with µ = j2π(fsinθ)d/c, denotes the P ×K spatial matrix , and
At = [at(υ1), ..., at(υK)]T , in which at(υ) = [1, ..., e−(L−1)υ]T

with υ = j2πf/fs, denotes the L × K temporal matrix. The sig-
nal matrix is S(t) = diag{s(t)} with s(t) = [s1(t), ..., sK(t)]T

and the noise matrix is N(t) = [ns(t),ns(t+Ts), ...,ns(t+(L−
1)Ts)], where ns(t) = [n1(t), ..., nP (t)]T .

3. THE PROPOSED FSF APPROACH

The proposed approach begins with the computation of the tempo-
ral covariance matrix Rt = E[X(t)HX(t)], which can be shown
as

Rt = AtPtA
H
t + σ2

nI (3)

where Pt = E[s(t)s(t)H ] denotes the signal covariance matrix,
and σ2

n is the noise power. An eigendecomposition can then be per-
formed on the temporal covariance, and the high-resolution subspace-
based algorithm such as the MUSIC [6] or ESPRIT [7] can be ap-
plied to estimate the frequencies. It is noteworthy that subspace-
based algorithms still can not distinguish very close impinging
rays, and here we assume that only q frequencies (f̂1, ..., f̂q), re-
ferred to as the group frequencies, are estimated, where q ≤ K.

Based on the group frequencies, we can rebuild the temporal
steering vectors at(υ̂1), ..., at(υ̂q), and then, based on these, de-
termine a set of temporal filters wt

j’s to minimize the output noise
power under a set of the linear constraints. More specifically, the
temporal filter for the group corresponding to the υ̂j is determined
by

min
wt

j

wtH
j Rt

nwt
j under CtHwt

j = gt
j , j = 1, ..., q (4)

where Rt
n is the temporal noise covariance matrix, gt

j is a q × 1

vector with 1 on the jth position and zeros elsewhere, and

Ct = [at(υ̂1), ..., at(υ̂q)] (5)

The solution of (4) can be readily shown as [5]

wt
j = (Rt

n)−1Ct(CtH
(
Rt

n)−1Ct
)−1

gt
j , j = 1, ..., q (6)

Because the noise is white, (6) can be reduced to

wt
j = Ct(CtH

(
Ct)

)−1
gt

j , j = 1, ..., q (7)

Note that there is any interpretation of wt
j in (7), which pro-

vides an illuminating insight into the temporal filtering process.
First, for notational brevity, we move at(υ̂j) to the first column of
Ct and partition it into two parts as

Ct = [at(υ̂j),A
⊥
tj ] (8)

where

A⊥
tj = [at(υ̂1), ..., at(υ̂j−1),at(υ̂j+1), ..., at(υ̂q)] (9)

After some manipulations, wt
j can be decomposed as

wt
j = Pt⊥

Ij
1

λt
j

at(υ̂j) (10)

where
Pt⊥

Ij = I − A⊥
tj(A

⊥H
tj A⊥

tj)
−1A⊥H

tj (11)

is a projection matrix onto the subspace spanned by at(υ̂j) and
λt

j = at(υ̂j)
HPt⊥

Ij at(υ̂j). Therefore, the data vector after tempo-
ral filtering can be expressed as

x′
j(t)

∆
= X(t)wj

t (12)

= Xj(t)w
′
j
t

(13)

where we have used (10),

Xj(t) = X(t)Pt⊥
Ij (14)

and

w′
j
t
=

1

λt
j

at(υ̂j) (15)

As such, the temporal filtering process can be interpreted as
the received data is filtered by a projection matrix and then by the
temporal steering vector of the desired signal group. Note that
x′

j(t) only contains the signals of a desired group and can be ex-
ploited to estimate the DOAs corresponding to this group. The
spatial covariance matrix of x′

j(t), R
s
j = E[x′

j(t)x
′
j(t)

H ], can be
shown to be

Rs
j = AsjPsjA

H
sj +

1

λt
j

σ2
nI, j = 1, · · · , rj (16)

where rj denotes the number of rays corresponding to f̂j , Asj =
[as(µj,1)..., as(µj,rj )], and Psj = E[sj(t)sj(t)

H ] with sj(t) =

[sj,1(t), ...sj,rj (t)]
T . Based on (16), we can use the 1-D subspace-

based algorithm again to estimate µ.
After this, we carry out a spatial beamforming process to par-

tition the signals into groups, yet still possessing the essential tem-
poral information to estimate the frequencies in the succeeding
stage. We use Xj(t) instead of X(t) to proceed to the next step to
make sure that the data only contain the jth group signals. Similar
to the temporal filtering process,the spatial filter can be determined
by minimizing the output noise power, which is posed as

min
ws

j,k

wsH
j,kRs

nws
j,k under CsH

j ws
j,k = gs

j,k, k = 1, ..., rj (17)

where Rs
n is the spatial noise covariance matrix, gs

j,k is an rj ×1

vector with 1 on the kth position and zeros elsewhere, and

Cs
j = [as(µ̂j,1), ..., as(µ̂j,rj )] (18)

and the solution of (17) can be readily shown as

ws
j,k = (Rs

nj)
−1Cs

j(C
sH
j

(
Rs

nj)
−1Cs

j

)−1
gs

j,k (19)

It can be readily shown that the noise after temporal filtering
is still white, so (19) can also be reduced to

ws
j,k = Cs

j(C
sH
j Cs

j

)−1
gs

j,k (20)

The data, after constrained beamforming, then become

xj,k(t) = (ws
j,k)HXj(t) (21)

which only contains the desired signal we are interested in.
Repeat (3) to obtain the temporal covariance again, but with

X(t) being replaced by xj,k(t). Based on the new temporal co-
variance matrix, we use the temporal subspace-based algorithm
again to obtain a more precise estimate of the frequency f̂j,k. At
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the same time, we can exploit this frequency and the µ̂j,k estimated
in the previous subspace-based algorithm to estimate the DOA by

θ̂j,k = sin−1(
c · µ̂j,k

j2πdf̂j,k

) (22)

The overall structure of the proposed algorithm is shown in
Fig. 1 with each step being described as follows:
Step 1: Rough FOA Estimation:

From the received data, estimate the temporal covariance ma-
trix by

R̂t =
1

PM

M∑

m=1

X(mTs)
HX(mTs) (23)

where M is the total number of samples. We then apply the subspace-
based algorithm to R̂t to estimate the group frequencies (f̂1, ..., f̂q).
Exploit (11) to constitute the projection matrix and then use (13)
to find Xj(mTs).
Step 2: Temporal Filtering:

Determine the temporal filters w′t
j , j = 1, ..., q, by (15) and

use (13) to obtain x′
j(mTs), which are the partitioned data after

the constrained temporal filtering.
Step 3: Estimation of µ:

From each x′
j(mTs), we can estimate the spatial covariance

matrices by

R̂s
j =

1

M

M∑

m=1

x′
j(mTs) · x′

j(mTs)
H

, j = 1, · · · , rj (24)

We can then apply the subspace based algorithm to each R̂s
j

to estimate spatial parameter {µ̂j,1, ..., µ̂j,rj} in the jth group.
Step 4: Spatial Beamforming:

Determine the spatial filters ws
j,k, k = 1, ...rj , by (20) and

use (21) to obtain xj,k(mTs) for all j’s and k’s, which are the
data containing only the ray with µ̂j,k.
Step 5: FOA and DOA Estimation:

Repeat (3) to obtain the temporal covariance again, but with
X(mTs) being replaced by xj,k(mTs). Based on the new tempo-
ral covariance matrix, we use the subspace-based algorithm again
to get a more exact frequency (f̂j,k). At the same time, we can
exploit this estimate and µ̂j,k to estimate the DOA θ̂j,k by (22).

4. PERFORMANCE RELATED ISSUES

4.1. Cramer-Rao Lower Bound

In this section, we determine the Cramer-Rao lower bound (CRB)
based on the data in (2), which the spatial covariance matrix con-
sists of two parameters, i.e. DOAs and FOAs. The derivations
are a modification of those given in [3]. First, note that the log
likelihood function of the signal is given by [3]

Ł(x; γ) = −PM

2
ln(2πσ2)

− 1

2σ2

M∑

m=1

[x(m) − s(m; γ)]H [x(m) − s(m; γ)] (25)

where x(m) = AsBaf +n(m)
∆
= s(m; γ)+n(m), in which

B = diag{βi}K
i=1 with βi ∈ R+ is the amplitude of the ith

signal, af = [e−υ1 , ..., e−υK ]H , and γ
∆
= [θT , fT , βT ]T with

θ = [θ1, ..., θK ]T , f = [f1, ..., fK ]T , and β = [β1, ..., βK ]T . The
Fisher information matrix then is given by

I(γ) =
1

σ2
Re

( M∑

m=1

Dm(γ)HDm(γ)
)

(26)

where Dm(γ) = [ ∂s(m;γ)
∂θ

, ∂s(m;γ)
∂f

, ∂s(m;γ)
∂β

] denotes the gradient
of the signal s(m; γ) in which

∂s(m; γ)

∂θ
= DθBF

∂s(m; γ)

∂f
= DfBF + (−j2πm/fs)AsBF

∂s(m; γ)

∂β
= AsF (27)

with Dθ = ∂As/∂θ, Df = ∂As/∂f , and F = diag{af}. The
CRB for θ and f can then be found from the inverse of the Fisher
information as

CRB(θ̂i) = [I−1(γ)]i,i,CRB(f̂i) = [I−1(γ)]i+K,i+K (28)

4.2. Computational Complexity

This subsection determines the arithmetic operations required by
the proposed approach using the ESPRIT as the underlying subspace-
based algorithm, referred to as FSF-ESPRIT. Note that in general
the length of the total samples is greater than the number of the
antennas and the size of temporal vector employed, i.e., M � P ,
M � L, the computations required by the FSF-ESPRIT are there-
fore dictated by (a) estimation of the first and second temporal
covariance matrices, which require ML2P and KML2 multipli-
cations, respectively; (b) estimation of the spatial covariance ma-
trices, which require qMP 2 multiplications, respectively; (c) tem-
poral and spatial filtering processes, which require qMLP and
KMLP multiplications, respectively, and the filtering process by
the projection matrices, which require qML2P multiplications.
As a whole, the total number of multiplications required is about
MPL(qL+L+ q +K)+ qMP 2 +KML2. Note that the com-
putational complexity of the proposed approach is in general lower
than that of the counterparts such as [3] as the latter stacks the data
before the SVD operation and thus involves higher dimensional
eigendecomposition.

5. SIMULATIONS AND DISCUSSION

Some simulations are conducted in this section to assess the pro-
posed approach. Assume that there are three users in this sys-
tem, received by a six-element ULA which spaced a half wave-
length apart. The temporal vector length is L = 6 , and the sam-
pling frequency is fs = 500 MHz. The DOAs of the users are
[−30,−29, 30]o with the center frequencies [160, 239, 240] MHz,
respectively.

Three algorithms are carried out for comparison, including the
the algorithm in [1], JAFE in [3], and the proposed FSF-ESPRIT.
128 symbols are employed to estimate the temporal and spatial
covariances. For each specific SNR, 200 Monte Carlo trials are
carried out. For a clear illustration, only the root-mean-square-
errors (RMSEs) of the DOA and FOA estimates of the second user,
which is close to the first user in DOA and the third user in FOA
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are provided, as shown in Figs. 2 and 3.
We can note from Figs. 2 and 3 that the proposed FSF-ESPRIT

outperforms [1] in both of the DOA and FOA estimates. The is
due to the fact that in [1] the covariance matrix is estimated us-
ing only part of the received data. The computational complexity
of [1] is also substantially higher than that of the FSF-ESPRIT, as
it involves a 2-D search. We can also note that the performance
of the proposed algorithm is close to the JAFE. However, in this
scenario, apart from the overhead of pairing process, the compu-
tational complexity of the FSF-ESPRIT is only about 30 % of that
of the JAFE if the R-Bidiagonalization SVD is used.
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