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ABSTRACT
1Geolocation in Non Line of Sight (NLOS) environments is
an important issue in wireless communication networks. In
several recent publications related with the nature and mag-
nitude of the NLOS phenomenon it is concluded that this
is the major source of error in position estimators based on
time measurements. This article presents a new approach
to ameliorate the effect of the NLOS exploiting the redun-
dant time measurements in scenarios with more than the
minimum number of base stations (BSs). This redundant
data allows to formulate the problem as a test of hypothesis
performing a hard decision to discard the BS considered to
be in a NLOS scenario. Numerical simulations show that
the proposed algorithm can discard the NLOS errors in cer-
tain scenarios. The algorithm is also compared with some
other existing methods to show the advantage of the new
approach.

1. INTRODUCTION

A problem of growing importance in mobile communica-
tion networks is estimating the mobile position since the in-
ternational commissions announced the minimum require-
ments in location for the next wireless generations. One of
the most common approaches to get the position is to mea-
sure several Time-of-arrival (TOA) or Time-difference-of-
arrival (TDOA) measurements among a set of BSs. Perfor-
mance is limited by the errors added to the measurements
caused mainly by the multipath effect. Several recent pa-
pers as [1] have analyzed that the most important source of
error is the NLOS phenomenon. These kind of errors oc-
cur when the direct path between the mobile and the BS
is blocked, for instance by a building, and a constant pos-
itive bias is added to the measurements. This is known as
a NLOS scenario and the involved BS is usually named a
NLOS-BS.
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search projects of the Spanish/Catalan Science and Technology Commis-
sions (CICYT/CIRIT): TIC2003-05482, TIC2002-04594, TIC2001-2356,
TIC2000-1025 and 2001SGR-00268.

Several simulations in recent literature have found that
the position error in the location estimators increases lin-
early with the increase in the NLOS errors ([2]). This killer
effect has been recognized by others and several NLOS mit-
igation algorithms have been presented. One of the most
common approaches consists of exploiting the fact that the
variance of the TOA measurements is significantly increased
in NLOS scenarios ([3] and [2]). These algorithms try to de-
tect the NLOS-BSs by comparing the estimated variance of
the measurements with an a-priori known variance. This
last variance cannot normally be provided because it de-
pends on the environment conditions (rural, urban or sub-
urban). Another approach is to use a fixed scatter model to
obtain an improved TOA estimate from a set of TOA mea-
surements corrupted by multipath errors ([4]). Although
these approaches can ameliorate the effect of the multipath,
they cannot detect constant NLOS error in short observation
windows.

Finally, another approach consists of exploiting the re-
dundant information present in the measurements to detect
and drop the NLOS errors. The most relevant previous con-
tribution in this direction was presented in [5] where the
problem was formulated in terms of hypotheses, where each
hypothesis corresponded to a set of BS considered under
NLOS scenarios. The algorithm presented there was based
on a weighted combination of the partial position estimates
associated to each hypothesis. Unfortunately, this combina-
tion presents poor performance if the NLOS error presented
in the TOA measurement is high.

This paper presents a new algorithm to detect the NLOS-
BSs using the redundant information present in the TOA
measurements when more than the minimum number of BSs
are present (2 BSs in 2D location and 3 BSs in a 3D lo-
cation). In this case, several hypotheses of the set of BSs
under NLOS scenarios are formulated and, on the basis of
the ML-detection principle [6], the most suitable hypothe-
sis can be selected. The main contribution of this paper is
applying a sound detection principle for the selection of the
best hypothesis, instead of averaging the results of all possi-
ble hypothesis based on heuristic arguments, as in previous
approaches.
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Numerical simulations show that, with a high enough
NLOS error, the algorithm is able to discard perfectly the
BSs under a NLOS scenario, clearly improving the mean
performance of the classical location algorithms. Although
the mathematical development presented in this paper and
the simulations have been performed with TOA measure-
ments, both can be, in a straightforward way, extended to
the TDOA measurements case.

2. ML DETECTION APPLIED TO NLOS PROBLEM

In this section, the general principles of the ML-detection
technique [6] are applied to the NLOS detection case based
on TOA measurements. In the next section, the specific
mathematical developments for this application are presented.

Let us assume that M TOA measurements are available
for each one of the K BS under visibility. The common
static model used to express the m-th TOA measurement
(in time) of the k-th BS is:

tk,m = fk(x) + nk,m + bk = ‖x − xk‖ + nk,m + bk (1)

where nk,m is a zero-mean gaussian noise term indepen-
dent in time and independent for each BS (E[nk,mnk′,m′ ] =
σ2

kδk,k′δm,m′ ), x is the true position of the mobile, xk is the
position of the k-th BS, bk is the possible NLOS bias error
(assumed constant along the time window), ‖ ‖ is the com-
mon norm operator and δk,k′ is the Kronecker delta func-
tion. The gaussian assumption of the term nk,m is a com-
mon hypothesis used in location-related publications as in
[3].

Under this assumption, the conditional density function
(p.d.f.) of the M − th TOA measurement of the k-th BS
(tk = [tk,1, . . . , tk,M ]T ) can be expressed as follows:

pNLOS
k (tk|x, bk) =

M∏
m=1

1√
2πσk

e
− 1

2

(
tk,m−fk(x)−bk

σk

)2

(2)

pLOS
k (tk|x) =

M∏
m=1

1√
2πσk

e
− 1

2

(
tk,m−fk(x)

σk

)2

(3)

Note that the two previous expressions correspond to the
assumption that the k-th BS is or is not under a NLOS sce-
nario.

The proposed algorithm is based on considering differ-
ent hypothesis characterized by the subset of BSs that are
assumed to be under a NLOS scenario. The number of
hypothesis considered depends on the number of available
TOA measurements (K) and the maximum number of pos-
sible NLOS-BSs considered. If we only want to consider
that single NLOS-BS may be present, the number of hy-
pothesis will be Nhyp =

(
K
0

)
+

(
K
1

)
= 1 + K. If two

possible NLOS-BSs are considered, the number of hypoth-
esis grows up to Nhyp =

(
K
0

)
+

(
K
1

)
+

(
K
2

)
= 1 + K +

K · (K − 1)/2 and so on. Logically, the complexity of the
algorithm will grow with the number of considered hypoth-
esis and a trade-off between the capacity to detect (maxi-
mum number of BS considered under NLOS) and the per-
formance in the absence of NLOS errors becomes a key as-
pect to be analyzed.

In general the l-th hypothesis can be characterized by
the set of BSs assumed to be under a NLOS scenario (SNLOS

l )
and the complementary set of BSs that are assumed to be
under a LOS scenario (SLOS

l ). Then, the conditional p.d.f.
of the KM TOA measurements associated to the l-th hy-
pothesis can be expressed as:

ql

(
t|x,bSNLOS

l

)
=

∏
k∈SNLOS

l

pNLOS
k (tk|x, bk)

∏
k∈SLOS

l

pLOS
k (tk|x)

(4)
where t =

[
t1

T , t2
T , · · · , tK

T
]T

is the vector formed with
the KM TOA measurements and bSNLOS

l
is the vector formed

with the NLOS error bias (bk) presented in (1) of the BSs
assumed to be under NLOS in this hypothesis.

It can be noted, that the conditional p.d.f. of each hy-
pothesis depends on a different subset of unknown param-
eters. These are the true position of the mobile (x) and
the set of bias (produced by the NLOS effect) of the as-
sumed NLOS-BSs (bSNLOS

l
). The basic principle of the

ML-detection technique is finding the ML estimation of the
unknown parameters of each hypothesis before comparing
them using the classic likelihood ratio test. Hence, we max-
imize the conditioned l-th hypothesis p.d.f. with respect to
the set of parameters of the l-th hypothesis as follows:

qML
l (t) = max

x,b
SNLOS

l

ql

(
t|x,bSNLOS

l

)
(5)

Note that the p.d.f. associated to each hypothesis does
not depend now on any unknown parameter, so the selected
hypothesis can be chosen as follows:

l̂ = arg max
l

γl · qML
l (t) (6)

where the constants γl are assigned according to each a-
priori probability of the hypothesis. If no knowledge of the
probability of each hypothesis is given, a reasonable selec-
tion would be γl = 1,∀ l.

3. PROPOSED ALGORITHM

This section shows the specific expressions of the proposed
algorithm developed in the previous section.

The maximum difficulty in the proposed algorithm is the
maximization process needed in (5). In this maximization
process, we have to find the position of the mobile x and
a subset of biases bSNLOS

l
that best jointly fit the p.d.f. of

the available TOA measurements. Despite this joint nature
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of the maximization process, both position and biases esti-
mates can be expressed separately after non-trivial mathe-
matical manipulations ([7]) as:

x̂l = arg max
x

∏
k∈SLOS

l

pLOS
k (tk|x) (7)

b̂k,l =
1
M

M∑
m=1

tk,m − fk(x̂l) (8)

where b̂k,l is the bias estimate of the k-th BS. Logically, the
k-th BS represents all BS under a NLOS scenario in the l-th
hypothesis.

These previous expressions are indicating that the ML
estimate of the position under the l-th hypothesis is the ML
estimation of the position only using the TOA measure-
ments corresponding to BSs assumed to be under a LOS
scenario. Coherently, the biases estimates are the exact dif-
ference between the correspondent TOA measurement and
the theoretical TOA value taking the position estimate ob-
tained before (x̂l). Note that this result is only valid under
the gaussian assumption explained in section (2).

After this result, the ML-detection algorithm presented
in the first section is quite simple because the ML proce-
dure to compute the position using free-of-bias TOA mea-
surements has been widely studied in wireless location lit-
erature ([8]). Concretely, it has been applied in the simula-
tion a modified version of the efficient algorithm presented
in ([9]), but similar results are obtained when standard ML
location methods are used.

In order to find more compact expressions, let us con-
tinue applying the natural logarithm to (6) as follows:

l̂ = arg max
l

[
ln γl + ln qML

l (t)
]

= arg max Γl (9)

where Γl, defined in a trivial way, is commonly called the
hypothesis-ratio.

If we now apply the definition of the individual p.d.f.
associated at each BS ((2) and (3)), the hypothesis ratio pre-
sented is simplified as follows:

Γl = C + ln γl + max
x,b

SNLOS
l

Θ
(
t,x,bSNLOS

l

)
(10)

Θ =
M∑

m=1

⎡
⎣∑

k∈SNLOS
l

(tk,m − fk(x) − bk)
−2σ2

k

2

+
∑
k∈SLOS

l

(tk,m − fk(x))
−2σ2

k

2
⎤
⎦

(11)
In these expressions, C is an irrelevant constant and the pa-
rameters of Θ have been removed in the second equation for
space reasons. Now, if we apply the previous results of the
maximization process presented in (7) and (8), the first term
of Θ vanishes and Γl become:

Γl = C + ln γl +
M∑

m=1

∑
k∈SLOS

l

(tk,m − fk(x̂l))
−2σ2

k

2

(12)

In order to simplify the notation, we can define
[
σ̂2

k

]
l
as

the estimated variance of the M TOA measurements asso-
ciated to the k-th BS (under the l-th hypothesis).

[
σ̂2

k

]
l
=

1
M

M∑
m=1

(tk,m − fk(x̂l))
2 (13)

Then, using (12) and (13) in (9), the decision-rule be-
comes:

l̂ = arg min
l

⎡
⎣ln γ−1

l +
∑

k∈SLOS
l

M

2

⎛
⎝

[
σ̂2

k

]
l

σ2
k

⎞
⎠

⎤
⎦ (14)

Observing this last expression, the procedure to com-
pute the metric (or hypothesis-ratio) for each hypothesis
can be summarized in two steps: first, compute the ML-
estimation of the position using only the BSs that are as-
sumed to be under a LOS scenario and second, using this
previous position estimate, compare the theoretical variances
with the estimated ones. Note that only the BSs under LOS
have to be used again in this second step.

Finally, once the hypothesis has been selected using (14),
the final position estimate corresponds to the partial position
estimate (x̂l̂) of the selected hypothesis.

4. NUMERICAL SIMULATIONS

This section shows the numerical simulation conducted to
evaluate the performance of the algorithm. Concretely, the
scenario consists in five BS that provide four TOA measure-
ments in a LOS situation and one in a NLOS. The proposed
algorithm is tested (10000 trials) with different values for
the NLOS-bias in order to evaluate the performance in sce-
narios with a soft or hard NLOS phenomenon. BSs are dis-
tributed uniformly in a circumference of 5 Km radius cen-
tered at the position of the mobile in order to avoid singular
geometry problems. The variance of all TOA measurements
is assumed constant (σ).

The proposed algorithm is compared with the two limit
cases: the worst algorithm that computes the ML-estimate
of the position using always the five TOA measurements,
and the best algorithm that uses only the four BSs under
LOS conditions (unless when the NLOS bias error is zero,
in which case, all measurements are used). Logically, this
second algorithm is impossible to be implemented and is
only presented as a benchmark against which to compare
the proposed algorithm. The algorithm is also compared
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Fig. 1. Performance of the proposed ML-detection algo-
rithm

with the Chen’s algorithm [5] that consists of weighted av-
erage of the position estimate associated to all possible hy-
potheses.

The simulated algorithms compute a 2D position assum-
ing that the mobile is placed at the same plane as that of the
BSs and the ML-detection algorithm only takes as hypoth-
esis the possibility of a single NLOS-BS, so the number of
hypotheses is Nhyp = 1 + K = 6.

The conclusion is that with a high enough NLOS er-
ror, the proposed ML-detector can completely discard the
NLOS-BS and compute exactly the same position as the
best algorithm. Note also that with small NLOS errors the
performance of the algorithm is a little poorer than not im-
plementing any NLOS mitigation technique. This presents
a clear trade-off that can be adjusted with a proper selection
of the coefficients γl in (6). The performance of the Chen’s
algorithm is quite similar to the proposed one for low val-
ues of the NLOS-bias. However, in scenarios with a higher
NLOS-bias, the proposed method, clearly, outperforms that
of Chen’s.

Finally, it can be observed in the figure that the detection
is much more difficult for high values of σ because the same
NLOS bias is not as easily detectable as for low values.

5. CONCLUSIONS

This paper has shown a new technique to mitigate the NLOS
effect in location estimators based on TOA measurements.
Concretely, the proposed algorithm exploits the redundant
information present in available data when more than the
minimum number of BSs are available. This can be seen
as an improvement of the classical ML position estimation
technique (widely studied in recent literature) by adding the
hypothesis presented in this paper to detect the NLOS situ-
ations. The proposed algorithm is based on the formulation
of hypothesis associated to different subsets of BSs consid-
ered to be in a NLOS scenario. A hard decision algorithm

is presented applying the ML-detection principle to decide
the subset of NLOS-BTs.

Numerical simulations show that for high values for the
NLOS-bias error, the algorithm is able to discard the BSs
under a NLOS scenario performing a near optimum position
estimation. Simulations also prove that the performance of
the proposed ML-detection algorithm depends on the vari-
ance of the TOA measurements. This is, low values of σk

allow the algorithm to detect more clearly the NLOS-bias
added to some TOA measurements. Finally the algorithm
has been compared with the most relevant existing methods
in order to show the advantages of the proposed approach.
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