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ABSTRACT

1 Geolocation of mobile terminals has become in the last
decades an important issue in mobile networks. In the litera-
ture, there have been presented several closed-form position
estimators based on Time-difference-of-arrival (TDOA) mea-
surements. Only Fang’s estimator can be considered opti-
mum in the Maximum Likelihood (ML) sense. Unfortu-
nately, it can only be applied to the particular case of two
TDOA measurements for the two dimensional (2D) location
case. This paper presents an extension of this closed-form
estimator to be applied to an arbitrary number of TDOA
measurements by means of a transformation in the Max-
imum Likelihood function. This allows to split the ML
function minimization in several partial ML minimizations
which only consider a subset of the available measurements
where the original Fang’s estimator can be applied. Numer-
ical simulation show that the proposed algorithm, that can
be considered asymptotically the ML-estimator, attains the
theoretical limits for all range of reasonable SNR values and
has a low implementation complexity.

1. INTRODUCTION

A problem of growing importance in mobile communica-
tion networks is finding the position of mobile terminals.
This will be mandatory for public-access cell-networks and
very useful for future position-based services and position-
based network managers. One of the most common ap-
proaches is getting the position estimate by measuring sev-
eral time of arrival (TOA) or TDOA measurements among
a set of neighbor base stations (BSs). The major problem
in this kind of approaches is the non-linear relationship be-
tween the measurements (TDOAs or TOAs) and the posi-
tion (Cartessian coordinates). This phenomenon produces a
non-convex ML function difficult to maximize.

In the recent literature, several approaches have been
presented to solve this problem. The most common ap-
proach is the implementation of iterative algorithms [1] where
the position estimate is improved at each step by finding the
local minimum Least Square (LS) solution (using the lin-
earized ML-function). The major problems of this approach
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are the high complexity associated to the LS procedure and
the difficulty of finding an initial estimate for the position.

Another approach presented in previous publications con-
sists in finding closed-form expressions for the position es-
timate. This has the great advantage that the position is de-
livered in one step and an initial position estimate is not re-
quired. Contributions in this direction can be found in [2],
[3] and [4] where several approximations are performed for
linearizing the problem. Although good performance is ob-
tained with these closed-form estimators, especially with a
high number of TDOA measurements, they can not be con-
sidered optimum in the ML sense.

The major contribution in this direction was performed
by Fang [5] who obtained a closed-form position estimator
in the form of a simple quadratic equation. This is found by
solving the equations related with the hyperbolas associated
to the TDOA measurements. The main advantage of this
algorithm is its optimality due to the fact that it is equiva-
lent, as it will be shown in this paper, to the ML algorithm.
The major drawback of this algorithm is that it only works
when the minimum number of TDOAs are presented (i.e. 2
TDOA measurements for a 2D location). Unfortunately, as
far as we know, there has not been presented in the literature
an extension of his work for the generic case of an arbitrary
number of TDOA measurements.

The contribution of this paper is generalizing the ex-
plicit closed-form estimator presented by Fang in [5] for
the generic case of N independent TDOA measurements.
This will be able thanks to a transformation of the ML non-
convex function that allows to estimate the position as a lin-
ear combination of partial estimates. These are obtained ap-
plying the original Fang’s estimator to a subset of the orig-
inal TDOA measurements. This new estimator is shown to
be asymptotically (in time) the ML estimator which attains
asymptotically the Cramer-Rao-Lower-Bound (CRB). Sim-
ulation results will show that the new estimator attains the
theoretical limits, presents good performance in all reason-
able range of SNR and has a low implementation complex-
ity.

2. PROBLEM STATEMENT

Assuming that t = [t1, · · · , tN ]T is the vector contain-
ing the N independent TDOA measurements from a set of
L = N +1 BSs and Rt = diag

(
σ2

1 , · · · , σ2
N

)
is the covari-

ance matrix of t, the ML position estimator in the case of
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gaussian noise can be expressed as follows:

x̂ = arg min
x

φ(x, t) (1)

where φ(x, t) is the negative log-likelihood function de-
fined as:

φ(x, t) = (t − f(x))T Rt
−1(t − f(x)) (2)

where f(x) = [f1(x), · · · , fN (x)]T is a vector containing
the well known non-linear hyperbolic functions (for the 2D
case):

fn(x) =
∥∥x − xpn,1

∥∥ − ∥∥x − xpn,2

∥∥ (3)

where pn,1 and pn,2 are the indexes of the associated BSs of
the n-th TDOA measurement. Normally these indexes are
pn,1 = 1 and pn,2 = n + 1, which correspond to the case
when all TDOA measurements are performed with respect
to a common BS. In any case, 1 ≤ pn,1,pn,2 ≤ L.

Note in (2) that if we can find a position estimate (x̂F )
that satisfies f(x̂F ) = t independently of the value of Rt,
this will be always the ML estimation because it will be al-
ways the minimizer of φ(x, t). This equation was solved
actually by Fang [5] and this is why the Fang’s closed-form
position estimator can be considered optimum in the ML
sense. Unfortunately, this estimate can only be found when
the number of TDOA measurements is equal to the num-
ber of Cartesian coordinates of the position to be estimated
(N = 2 for the 2D case). With additional TDOA measure-
ments, there will not be solution for the equation f(x̂F ) = t.

3. EXTENSION OF THE ML APPROACH
In this section, it will be presented a generalized version of
the ML non-convex function φ(x, t) defined in (2), needed
to divide the ML position estimate x̂ into a linear combina-
tion of partial ML estimators. These partial ML estimators
will be solved with the Fang’s closed-form algorithm that is
actually the ML estimator for a specific number of TDOA
measurements as it has been shown in the previous section.

First of all, it is not difficult to show that φ(x, t) can be
expressed as:

φ(x, t) = (te − fe(x))T R−1
te

(te − fe(x)) (4)

where

te =
[
t1 · 1T

Q1
, · · · , tN · 1T

QN

]T
(5)

fe(x) =
[
f1(x) · 1T

Q1
, · · · , fN (x) · 1T

QN

]T
(6)

Rte
= diag

(
σ2

1 · Q1 · IQ1 , · · · , σ2
N · QN · IQN

)
(7)

where 1p is an all-ones p-length column vector, Ip is the
identity matrix of rank p, and Qn > 0 is the positive integer
indicating the number of times that the contribution of the
n-th TDOA measurement (tn) is repeated in te, fe(x) and
Rte

. Note here that the dimension of the vectors te, fe(x)
and the square matrix Rte

are M =
∑N

n=1 Qn and MxM
respectively.

This first transformation allows us to express the con-
tribution of a specific TDOA measurement (the n-th for in-
stance) as the independent contributions of Qn virtual TDOA

measurements with the same value of the original one and
with a variance Qn times higher.

The second steep is to realize that a permutation order
does not affect the ML-function. So we have:

φ(x, t) = (tep − fep(x))T R−1
tep

(tep − fep(x)) (8)

where

tep = Pmte fep(x) = Pmfe(x) Rtep
= PmRte

PT
m

(9)
Pm being any square permutation matrix of dimension M .

Finally, it can be demonstrated that if the M elements
of the vectors tep and fep(x) are partitioned into a set of K
subvectors of generic lengths as follows:

tep =
[
tep1

T , · · · , tepK
T
]T

(10)

fep(x) =
[
fep

T
1 (x), · · · , fep

T
K(x)

]T

(11)

and if the square diagonal matrix Rtep
is accordingly parti-

tioned in K square diagonal submatrices as:

Rtep
= diag

(
Rtep1

, · · · ,RtepK

)
(12)

the ML position estimate x̂ shown in (1), that is the mini-
mizer of φ(x, t), can be approximated as follows:

x̂ ≈
[

K∑
k=1

C−1
k (x̂k)

]−1 K∑
k=1

C−1
k (x̂k) · x̂k (13)

where x̂k is the ML position estimate using only the TDOA
measurements included in the vector tepk, with the associ-
ated covariance matrix Rtepk

. A similar expression to (13)
can be found in the case of a non block-diagonal matrix
Rtep

so the initial diagonal assumption for Rt is not a re-
striction in this approach.

To demonstrate this last step (to obtain (13)) and to find
the expression of Ck(x), let us apply the definitions of the
partition, this is (10), (11) and (12) to the ML-function shown
in (8) to obtain:

φ(x, t) =
K∑

k=1

(
tepk − fepk(x)

)T
R−1

tepk

(
tepk − fepk(x)

)
(14)

Now, assuming the following linear approximation

fepk(x) ≈ fepk(x0k) + Fepk(x0k)[x − x0k] (15)

where we define Fepk(x) = ∇xfepk(x) as the gradient of
fepk(x) w.r.t. x, we can obtain the ML position estimator
solving the equation ∇xφ(x, t) = 0 as follows:

x̂ ≈
[

K∑
k=1

C−1
k (x0k)

]−1 K∑
k=1

C−1
k (x0k) · x̂k (16)

where

Ck(x) =
(
Fepk(x)T R−1

tepk
Fepk(x)

)−1

(17)
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and

x̂k = x0k+Ck(x0k)·Fepk(x0k)·R−1
tepk

(
tepk − fepk(x0k)

)
(18)

Note here, that x̂k is the approximated ML position estima-
tor only taking into account the TDOA measurements of the
k-th subset tepk and their associated variances Rtepk

under
the linear approximation in (15). This can be simply substi-
tuted by the natural ML estimator defined as follows:

x̂k = arg min
x

φ
(
x, tepk

)
(19)

φ
(
x, tepk

)
=

(
tepk − fepk(x)

)T
R−1

tepk

(
tepk − fepk(x)

)
(20)

Finally, it can be noted that matrices Ck(x) in (16) depend
on a position estimate x0k (defined as a position estimate
near to the true position) needed in the linear approximation
in (15). A reasonable approximation of this first position
estimate is the same estimate given by the associated subset
x0k = x̂k which is our proposal to obtain (13). Numerical
simulations will show that this approximation has no impact
in the estimator accuracy for all range of SNR.

The conclusion is that the general ML position estimate
in an scenario with N independent TDOA measurements
can be approximated as a linear combination of K partial
ML position estimates. These are obtained as the mini-
mizers of the negative log-likelihood function defined in
(20) taking only into account the TDOA measurements con-
tained in the associated subset. Note here, that these K sub-
sets of TDOA measurements follow these rules:

• An original TDOA measurement is always included
in, at least, one subset.

• An original TDOA measurement can be included in
several subsets.

• The variance associated to each TDOA measurement
included in a subset is the original variance of that
TDOA measurement multiplied by the number of times
that this TDOA measurements has been used. This is,
the number of subsets that include this measurement
(Qn in (5), (6) and (7) for the n-th measurement).

• The number of subsets, the number of the elements
inside each subset and the order of the elements inside
are absolutely arbitrary.

4. ASSIGNMENT ALGORITHM
Taking into account the ML decomposition shown in the
previous section, we can express the ML position estimation
(x̂) as a linear combination of several partial ML-estimations
considering a subset of the original TDOA measurements.

The idea here consists in applying the closed-form Fang’s
estimator [5] to each subset, motivated by the fact that this
is the ML estimator if the number of TDOA measurements
included in the subset coincides with the dimension of the
position to be estimated. So we have to divide the original
N TDOA measurements in K subsets of length two (for the
2D case) following the rules shown in the previous section.
Of course, there is a lot of possibilities to perform this par-
tition.

The problem here is that Fang’s estimator fails in cer-
tain scenarios. Concretely, it may give an ambiguity of two
points (two solutions of x̂F ) or may not give a solution at
all. This can be solved in most cases by doing the partition
explained before in a different way (different subsets). Now,
we present a reasonable procedure to perform the partition
avoiding the problems presented by the original Fang’s es-
timator (See notation notes bellow).

1. ΦN = set of indexes of the non-used TDOA measure-
ments

2. ΦU = set of indexes of the used TDOA measurements
3. If ΦN is null → Finish assignation
4. For m = {ΦN − ΦN (1)}
5. subset = { tΦN (1) , tm }
6. If Fang( subset )
7. WRITE subset
8. Go to 1
9. End If

10. End For
11. For m = {ΦU}
12. subset = { tΦN (1) , tm }
13. If Fang( subset )
14. WRITE subset
15. Go to 1
16. End If
17. End For
18. Discard tΦN (1)

19. Go to 1

Notation notes: By non-used TDOA measurement, we mean
all initial TDOA measurements not assigned yet to a subset.
Fang(subset) is a function that returns TRUE if Fang’s po-
sition estimator produces a non ambiguous solution using
the TDOA measurements included in subset. Instruction
WRITE subset means that this subset is selected to be used
and tm is the m-th original TDOA measurement. By def-
inition, the instruction m = {Φ} means: for m = all values
included in Φ. Finally the instruction ΦN −ΦN (1) indicates
the set of all elements of ΦN except the first one. Note that
in line 18, this non-used TDOA measurement is discarded
because it is impossible to produce a position estimate with
the Fang’s algorithm. This means that the hyperbola associ-
ated to this TDOA measurement does not intersect with any
other hyperbola of any other TDOA measurement. If this
occurs with all N TDOA measurements, it is said that this
is an outlier.

5. SIMULATION RESULTS
In this section, the performance analysis of the proposed al-
gorithm is presented. The scenario used in the 2D location
simulations presented, consists in a set of L = {3, 4, 5 and
6} BSs placed uniformly at a circumference of radius 1000
meters centered at the origin of coordinates. The mobile
has been placed at the point [10, 10] (meters). Although the
proposed algorithm accepts an arbitrary distribution of vari-
ances for the TDOA measurements, it has been simulated,
for clarity, a common standard deviation σk = σ, ∀k from
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10 to 3000 meters in order to cover all possible scenarios
(high and low SNR). The algorithm is implemented using
the assignment algorithm strategy in section (4). The per-
formances analyzed are the mean square error (M.S.E) and
the outlier probability (probability of no valid solution) over
10000 trials.

In figure (1), the ratio between the M.S.E. and the CRB
[6] is depicted for the original Fang’s algorithm and for the
proposed one. Note here that in scenarios with more than
two TDOA measurements, the Fang algorithm is applied to
the two TDOA measurements that produce the minimum
position error. It can be clearly seen that the proposed algo-
rithm attains the CRB at all reasonable SNR values. It can
be also seen that the original Fang’s algorithm only attains
the CRB in the scenario with two TDOA measurements, this
is, minimum number of TDOA measurements for 2D loca-
tion( Fang’s algorithm performance with two TDOA mea-
surements equals the proposed algorithm performances).

In figure (2) it can be seen at the right side of the fig-
ure (using the right axis) the outlier probabilities for the
simulated scenarios. Again, for reasonable values of σ, the
outlier probability remains at zero. In the same figure (us-
ing the left axis), it can be seen the ”effective number of
TDOA measurements”. By this concept we mean the mean
number of TOAS used by the proposed algorithm. Note
that this reduction in the number of TDOA measurements is
produced by the discarding process performed in line 18 of
the pseudo-code shown in the previous section. This figure
shows that for hight enough values for σ, the information
of the TDOA measurements collapses. Note that this phe-
nomenon is produced for values of σ similar to the distance
from the mobile to the BSs (1000m in this simulation), this
is, for very unlikely SNR scenarios.
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6. CONCLUSIONS
This paper has presented a generalized version of the Fang’s
algorithm [5] applicable to an arbitrary number of TDOA
measurements are available. Some properties of the non-
convex ML function of the problem have motivated to split
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the general ML function minimization into several partial
ML function minimizations where the original algorithm
can be applied to.

Simulation results confirm that this partition of the gen-
eral ML function maintains the asymptotic optimality and
allows the implementation of a very low complexity exten-
sion of the Fang’s algorithm.

A proposed method is presented to perform this partition
taking into account the limitations of the original Fang’s al-
gorithm.
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