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ABSTRACT

Though a variety of misfire detection methods exist, the number

of approaches based on structure-borne sound is scarce due to its

difficult interpretation. The paper presents a procedure for mis-

fire diagnosis that exploits a multichannel sound signal from ac-

celerometers mounted on the surface of an automotive engine. The

EM algorithm is used to decompose the measured sound into indi-

vidual components associated with single combustions. For these

simplified scenarios, a statistical test based on the shape of the re-

constructed in-cylinder pressure is devised. Measurement data col-

lected from a four cylinder test bed engine is used to validate the

proposed approach and show its superiority to the single-channel

solution.

1. INTRODUCTION

Driven by gradually more demanding government regulations, the

detection of misfired combustions in automotive engines has at-

tracted considerable interest in recent years. The unsuccessful ig-

nition of the air-fuel mixture inside the cylinders affects the fuel

efficiency adversely and has a negative impact on the environment.

Therefore, on-board diagnosis systems are required to monitor the

combustion process and to alert the driver when the misfire rate

exceeds certain mandatory threshold.

The methods proposed in the literature differ primarily in the

nature of the signal used for diagnosis. The most extended ap-

proaches, which are also the ones usually found in production en-

gines, are based on the analysis of the instantaneous fluctuations in

the engine angular velocity [1]. The highly sampled signal from a

gear wheel attached to the crankshaft is used to detect the decrease

in torque caused by misfired combustions. However, it is often dif-

ficult to identify specific faulty cylinders, especially at high speeds,

low loads and certain road conditions.

Though standard production engines use one or more built-in

accelerometers to detect the occurrence of knock, the literature on

the application of these signals to misfire detection is very scarce.

Lindemann’s approach, which tries to detect the misfire signature

using nonlinear polynomial filtering, is one of the exceptions [2].

The method proposed in this paper generalizes the results pre-

sented by the authors in [3, 4, 5] for the single channel case. The

multichannel sound signal is first processed to obtain an approx-

imation of the individual in-cylinder pressure traces, and then a

conceptually simple test function is applied to detect the occur-

rence of misfire. The goal is to exploit both the redundancy of the

multichannel signal and also the complementary perception of the

engine cylinders due to the different positions of the accelerome-

ters.

In order to simplify the notation, the paper addresses the sig-

nal model for a single structure-borne sound sensor first. The EM

algorithm is used to decompose the sound signal into the contribu-

tions from the individual combustions. Thus, the EM framework

allows to introduce a simplified signal model consisting of a sin-

gle sound signature plus noise, which can be extended straightfor-

wardly to the multichannel case. The reconstruction of the pres-

sure trace is described as a prior step to the misfire detector, which

implicitly uses the estimated pressure shape as criterion. Finally,

the performance of the method and its superiority to the single sen-

sor approach are illustrated with real measurement data from a test

bed engine.

2. SOUND SIGNAL MODEL FOR A SINGLE SENSOR

The measured structure-borne sound is considered to result from

the superposition of Ncyl different sound components, one for

each cylinder, which are filtered versions of the corresponding

pressure signals [3]. The linearity of the filters allows to seg-

ment the Ncyl signals in the individual combustions, and to re-

order them following the ignition order. This way, the measured

sound can also be expressed alternatively as the superposition of

the contributions of each individual combustion. The model for

the structure-born sound from a single accelerometer is then

yn =

∞∑

l=−∞
yl,n(ϑl) + wn, (1)

yl,n(ϑl) = H[l](q
−1, n) xl,n(ϑl). (2)

The left hand side of (1) is actually a filtered version of the raw

structure-borne sound signal, yn = A(q−1)y0
n, where q−1 is the

backward shift operator, i.e. q−mzn = zn−m, and A(q−1) =

1 +
∑MA

m=1 amq−m is the impulse response of the filter. The term

yl,n(ϑl) denotes the sound signature of the single pressure trace

xl,n(ϑl), which is obtained after applying the time-variant filtering

H[l](q
−1, n) to the latter. The subscript [l] is shorthand for ‘(l

mod Ncyl) + 1’, since each combustion is associated with one

of the Ncyl cylinders and, correspondingly, a specific time-variant

transfer function. Finally, the noise term wn is modelled as a white

gaussian stochastic process of unknown variance σ2
w.

The periodic movement of the piston motivates the use of

Hk(q−1, n), k = 1, . . . , Ncyl [3, 6]. Assuming that the piston

position zk,n ∈ [zmin, zmax] captures the time-variant character

of the system, the transfer functions take the form

Hk(q−1, n) = H
(0)
k (q−1) + zk,n · H(1)

k (q−1). (3)

Accordingly, Hk(·) combines two conventional linear time-inva-

riant impulse responses, one of which is modulated by the piston

position.
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Fig. 1. Symbolic representation of the EM algorithm.

The individual pressure traces are parametrized as proposed in

[3]. The pressure due to compression of the fuel mixture and the

final phase of the combustion are modelled with one static shape

each. A third curve with a position parameter is used to describe

a moving lobe. The parametric model for a single combustion is

then, as a function of the continuous crank angle γ,

x(ϑ; γ) = α1 · u(γ) + α2 · v1(γ) + α3 · v2(γ − δ), (4)

where ϑ = (α1, α2, α3, δ)
′ contains the amplitudes and the non-

linear position parameter δ. For a 4-stroke reciprocating engine,

x(ϑ; γ) = 0 outside the interval γ ∈ [−180◦, 540◦) around TDC

(top dead center, the top upper piston position), with the main

pressure contribution taking place in the first 360◦ of this inter-

val (compression and power stroke).

3. EM FRAMEWORK

Though in (1) the summation is taken over all combustions, the

duration of the sound components is limited in time and thus only

a few ones contribute to the sound measured at a certain instant.

Consider now the task of estimating the pressure parameters ϑl

for the l-th component. The relevant data window, of length Nl,

is comprised between the starting and ending samples of the l-
th combustion. Since the different sound signatures overlap par-

tially, a total of Ml combustions contribute in different degrees

to the measurements in the window. Then, arranging the data in

the vectors y = (y1, . . . , yNl)
′ and ym(ϑm) = (ym,1(ϑm), . . . ,

ym,Nl(ϑm))′, m = 1, . . . , Ml, an estimate for the interesting pa-

rameter vector ϑl can be found by solving the least squares prob-

lem

min
ϑ1,...,ϑMl

∥∥∥∥ y −
Ml∑

m=1

ym(ϑm)

∥∥∥∥
2

, (5)

where ‖ · ‖ represents the Euclidean norm of a vector.

The evaluation of (5) involves a great overhead, since the main

interest lies on the parameters of just the l-th combustion. The

authors proposed in [3] to use the EM (Estimation - Maximiza-

tion) algorithm [7] to circumvent the computationally demanding

nonlinear multidimensional search for the δm’s (4) and to exploit

estimates from previous data windows efficiently.

The EM algorithm, as depicted in figure 1, uses a prior pa-

rameter vector ϑ̂[i] to decompose the measured signal into the in-

dividual components. This decomposition transforms the original

problem (5) into a set of simpler optimization tasks of reduced

dimension that are solved in parallel in the M-Step. Since the al-

gorithm guarantees that the likelihood L(ϑ̂[i+1]) for the new pa-

rameter vector ϑ̂[i+1] is greater or equal to L(ϑ̂[i]), the two-step

procedure is iterated until convergence. The reader is refered to

[3] for a more detailed description.

3.1. Simplified signal model

The EM framework reduces the original task (5) to a simplified

scenario consisting of a single sound signature embedded in noise.

The extension of the estimation problem to the multichannel case

can then be realized in a straightforward way.

The signals from P accelerometers are combined to obtain

better pressure reconstructions and improved misfire detection ca-

pability with respect to one sensor alone [4]. The goal is to exploit

the strong dependence of the measured sound signal on the physi-

cal position of the sensor with respect to the different cylinders.

Contrary to array processing, the geometry of the problem is

too complicated to formulate an exact physical relationship be-

tween the signals registered by the different accelerometers. The

only common property is that the sound signatures, though differ-

ent from sensor to sensor, are originated by the same combustion.

In the remaining we will refer exclusively to signals associated

with the l-th combustion. Therefore, this index will be dropped off

the notation for simplicity. On the other hand, the index i is intro-

duced to refer to the different structure-born sound channels. Un-

der this considerations, the signal model for each of the P sensors

now satisfies

si = yi(ϑ) + wi, i = 1, . . . , P. (6)

Within the EM framework, the sound component si associated

with the l-th combustion and the i-th sensor combines a sensor-

specific signature of the pressure trace, yi(ϑ), and a noise com-

ponent wi. This term, ideally a fraction of the global noise signal

for the i-th channel (1), is further modelled as a white gaussian

stochastic process with covariance Qi = E wiw
′
i = σ2

i I and sta-

tistical independence between sensors, E wiw
′
j = 0, i �= j.

According to the parametric pressure model (4), the common

pressure trace has the form

x(ϑ) = α1 · u + α2 · v1 + α3 · v2(δ) = X(δ) · α (7)

where α = (α1, . . . , α3)
′ contains the estimated amplitudes, u

corresponds to the compression curve and both v1 and v2 describe

the pressure increase associated with a successful combustion. The

filtering of x with the time-variant transfer function H i
[l](q

−1, n)
yields the sound signature for a specific combustion and channel

yi(ϑ) = α1 · ũi + α2 · ṽi
1 + α3 · ṽi

2(δ) = Yi(δ) · αi. (8)

Finally, with the multichannel vectors s = (s′1, . . . , s
′
P )′, y =

(y′
1, . . . , y

′
P )′, w = (w′

1, . . . , w
′
P )′ and the matrix Y(δ) =

(Yi(δ)
′, . . . ,YP (δ)′)′, the complete multichannel model reads

s = Y(δ) · α + w. (9)

This relationship is exploited in the following to efficiently solve

the pressure reconstruction problem and obtain a statistical test for

misfire detection.

4. MULTICHANNEL PRESSURE RECONSTRUCTION
AND MISFIRE DETECTION

The stochastic properties of the joint noise vector w suggest to use

the maximum likelihood criterion [8] to estimate α and δ. Since

w is jointly gaussian with block-diagonal covariance matrix Q =
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E ww′ = diag{Q1, . . . ,QP }, the log-likelihood function takes

the form

L(ϑ) = c1−
Nl

2

P∑

i=1

ln σ2
i −

1

2
(s−Y(δ) ·α)′Q−1(s−Y(δ) ·α),

(10)
where c1 describes the constant terms.

The maximization of (10) must be carried out with numeri-

cal methods. For a fixed position parameter δ, this corresponds

to solve a weighted least squares problem with a weighting ma-

trix that is unknown but for its diagonal structure. Under weak

assumptions, a two-step estimation based on iterating

α̂(σ2, δ) =
(
Y(δ)′Q−1Y(δ)

)−1
Y(δ)′Q−1s (11)

σ̂2
m(α, δ) = N−1

l

∥∥s − Y(δ) · α
∥∥ (12)

behaves asymptotically for Nl → ∞ like the weighted least squares

estimator with known Q [9]. Once the estimates α̂∗ and σ̂2∗ =
(σ̂2∗

1 , . . . , σ̂2∗
P )′ have been obtained, the likelihood is calculated

as

L(α̂∗, σ̂2∗, δ) = c2 −
N

2

P∑

i=1

ln σ̂2∗
i (13)

and is used as fitting criterion in the search for δ̂∗.

Finally, the best parameter vector ϑ̂∗ yields the reconstructed

pressure shape for the l-th combustion as

x̂l = x(ϑ̂∗) = X(δ̂∗) · α̂∗
(14)

Notice that each of the combustions contained in the l-th data

window also provides an estimate for the noise power σ̂2∗
i . Sim-

ilarly to the single channel case, their combination yields an es-

timate of the overall noise power of the different channels. Prior

estimates, averaged over several data windows, can be used to ini-

tialize the two-step iterative method (11).

As proposed in [4, 5] for the single channel case, the recon-

structed pressure can be used as misfire indicator. Since the trace

resulting from a faulty combustion corresponds to the compres-

sion of a gas in a closed volume, the amplitudes α2 and α3 in (4)

should be very small compared to the amplitude of the compres-

sion curve u(·). Specifically, the hypothesis ‘misfire’ H0 should

be tested against the alternative ‘normal combustion’ H1, defined

as

H0 := {α1 �= 0, α2 = 0, α3 = 0}, (15)

H1 := {α1 �= 0, α2 �= 0, α3 �= 0}. (16)

However, the lack of orthogonality between the curves of (4) makes

more convenient to evaluate if the pressure signal contains compo-

nents orthogonal to the compression curve. The hypotheses (15)

and (16) will be reinterpreted accordingly in the following.

Actually, just the estimated position parameter δ̂∗ is used in

the misfire test, while the amplitudes are recalculated. To approx-

imate the sound components si (6), the EM algorithm combines a

fraction of the estimated noise signal plus the reconstructed sound

signature using therefore the parameters of the prior iteration. But

this way, EM implicitly injects into the data the contribution we

want to detect. Therefore, for the purpose of misfire detection,

it is more convenient to reestimate s by subtracting all the sound

signatures but the l-th one from the measured multichannel signal

[4].

Formally, the signal model still corresponds to (6), but the

noise power σ2
i now corresponds to the overall noise power for

the i-th channel. Additionally, the σ2
i are assumed to be known,

since they can be estimated by averaging over past combustions.

More exactly, it is sufficient to know them up to a scaling factor,

K = c · Q, because only the ratio between them is relevant.

Let PB
A = A(A′B−1A)#A′B−1 and PB⊥

A = I − PB
A be

the projection and orthogonal projection matrices onto the column

space of A with norm B−1, where (·)# denotes a generalized

inverse and I the identity matrix. Using standard results from least

squares theory for normally distributed errors and signal detection

theory, it can be shown that

T =
P ·Nl − 3

2

s′Q−1
(
PQ

Y(δ̂)
− PQ

ũ

)
s

s′Q−1PQ⊥
Y(δ̂)

s
(17)

is under the hypothesis H0 and the true δ F-distributed with 2 and

P ·Nl − 3 degrees of freedom, which also holds approximately for

the current estimate δ̂∗. The numerator of (17) contains the energy

of the sound signal associated to the complete pressure trace mi-

nus the part corresponding to ũ, which yields the energy fraction

orthogonal to the compression curve.

The test function (17) decides in favor of ‘misfire’ when T ≤
F2,P·Nl−3,β holds, where the threshold represents the value that a

F2,P·Nl−3-distributed random variable surpasses with probability

β. The probability of a correct misfire detection under the hypoth-

esis is then 1 − β.

Notice that the interpretation of the test is inverse to the tra-

ditional approach. Commonly, the detector yields a certain signal

detection probability for a previously set false alarm rate β. In our

case, the objective is to detect the occurrence of misfire, i.e. the

absence of signal, which happens with probability 1−β under the

conditions stated before.

The possibility to set the theoretical misfire detection proba-

bility a priori is an useful feature from the application viewpoint,

since this is the principal performance indicator specified in the en-

vironmental regulations. The dependance of the threshold on the

combustion sample number Nl is also convenient because it can

be adapted automatically to different engine speeds and sampling

rates.

5. EXPERIMENTAL RESULTS

Although the quality of the reconstructed pressure is linked with

the performance of the multichannel misfire detector, only the lat-

ter shall be evaluated with real measurement data collected from a

four cylinder, 1.8 l, turbo charged, spark ignition test bed engine.

All cylinders were equipped with a spark plug with integrated pres-

sure sensor. Four acceleration sensors were mounted on the intake

side of the engine approximately 10 mm below the cylinder head,

each one close to the axis of one of the cylinders. Additionally, the

crank angle was measured via a crankshaft sensor. After appropri-

ate filtering, all the signals where downsampled to 2.5 kHz.

As detailed in [3], for each operating point a training data set

was processed to identify the transfer functions A(·) and Hk(·) of

the signal model (1), and also to obtain the three curves of the para-

metric pressure model (4). An independent data set at the same

operating conditions was used to evaluate the misfire detector.

In [4] and [5] it was shown that with the theoretical thresh-

old only a reduced number of misfires could be detected correctly.

This can be attributed to the mismatch between the measured

structure-borne sound and the signal model (1), and also to the
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Sensor 1
Speed \ Load High Medium Low

1000 – 100 100

2000 100 100 / 57 / 43 21 / 14 / 7

3000 100 100 / 93 / 86 43 / 7 / 0

4000 100 100 / 93 / 86 21 / 7 / 7

5000 100 / 100 / 92 69 / 38 / 31 21 / 14 / 14

6000 71 / 71 / 36 23 / 8 / 8 –

Sensor 3
Speed \ Load High Medium Low

1000 – 100 100

2000 100 100 / 100 / 93 0 / 0 / 0

3000 100 100 57 / 29 / 29

4000 100 100 7 / 0 / 0

5000 100 77 / 77 / 77 71 / 50 / 21

6000 100 / 93 / 93 46 / 15 / 8 –

Sensor 1 and 3 (multichannel)
Speed \ Load High Medium Low

1000 – 100 100

2000 100 100 29 / 21 / 14

3000 100 100 86 / 57 / 57

4000 100 100 36 / 29 / 29

5000 100 77 / 77 / 77 79 / 43 / 29

6000 100 62 / 46 / 46 –

Table 1. Cumulative experimental results for 1000 combustions

with 13 to 14 misfires, for the accelerometers located at cylinder 1

and 3. For each operating point, the misfire detection probability

(in %) for an empirical misfire false alarm of (5%/1%/0.5%) is

shown. Not evaluated operating conditions are marked with a ‘-’.

limitations of the pressure parametrization (4). However, espe-

cially for high load and/or low speed, the test function discrimi-

nated very well between both types of combustions, and a slight

adjustment of the threshold was enough to obtain useful detection

rates.

Table 1 summarizes the results obtained with the accelerome-

ters located at cylinders 1 and 3, both on their own and combined

in a two-channel signal. Three load conditions (high, medium and

low) and six different engine speeds (from 1000 to 6000 rpm) were

considered. A total of 13 to 14 misfires at different cylinders were

present among the 1000 combustions contained in each data set.

Since the reduced number of misfires does not allow to set an arbi-

trary detection threshold a priori, the triplets in the table show the

misfire detection probability for an empirical threshold that mis-

takes normal combustions with probability 5%, 1% and 0.5%, re-

spectively.

As it is common to all existing misfire identification proce-

dures, the combination of low load and high speed define the most

critical operating points. For weak combustions, both the overall

energy of the signal and the pressure rise of a successfull com-

bustion decrease, thus affecting the accuracy of the pressure re-

construction. On the other hand, the number of combustions that

contribute to the sound in a given data window increases with the

engine speed, which makes the signal decomposition more diffi-

cult.

The results illustrate the superior performance of the multi-

channel detector when compared with the single channel counter-

parts. With respect to the latter, it is observed that, for both sensors,

the figures at the speeds of 2000 and 4000 rpm and low load are

comparatively low, but the reason for this behavior is not known

yet. However, though the improvement yielded by the multichan-

nel approach is most significant in the lower right corner of the

table, still better detection ratios are needed for an implementation

in commercial engines. A straightforward solution is to combine

the signals from more accelerometers at the cost of an increased

computational load. Moreover, it should be mentioned that the

sampling rate employed in the simulations is much lower than the

one conventionally used in the literature; in the present conditions,

at 6000 rpm a sampling period corresponds to 14.4◦ crank angle,

while usually the pressure and sound signals are sampled with a

resolution of 1◦ for analysis.

6. CONCLUSIONS

The paper exploits the signal decomposition achieved by the EM

algorithm to reconstruct in-cylinder pressure traces from multi-

channel sound signals. Under this framework, we devise a con-

ceptually simple misfire test that is based on the shape of the re-

constructed pressure and that is shown to outperform the single

channel solutions. Though the improved misfire detection proba-

bilities still does not satisfy existing regulations, the combination

of more accelerometers and higher sampling rates for high speed

operating points leaves room for improvement.
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