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ABSTRACT 

We consider target classification and detection based on back-

scattered observations measured from a sequence of target-

sensor orientations. The multi-aspect scattered waves from a 

given target are modeled with a hidden Markov model (HMM). 

The targets are assumed concealed and the absolute target-sensor 

orientation is assumed unknown; therefore, it is only possible to 

control the angular displacements (change in orientation) 

between consecutive measurements. The performance of the 

HMM classifiers/detectors is influenced by the choice of the 

angular displacements, the optimization of which motivates 

adaptive search strategies developed in this paper, based on 

entropy-driven optimality criteria. The search proceeds in a 

sequential fashion. Based on the previous observations and their 

associated angular displacements, one determines the optimal 

next displacement to perform an associated observation. The 

search strategies are detailed and example results presented on 

adaptive classification and detection of underwater targets. 

1. INTRODUCTION 

There are many sensing scenarios for which the target is 

stationary and the sensor position may be moved sequentially, to 

observe the unknown and concealed target from a sequence of 

target-sensor orientations (also called aspect angles throughout 

the paper). For example, an unmanned underwater or airborne 

vehicle (UUV or UAV) may observe a target from a sequence of 

aspect angles. Such multi-aspect sensing is widely observed in 

nature, for example in bats [1]. The motivation behind multi-

aspect sensing is that the scattered waves produced by a real-

world target are usually a strong function of the target-sensor 

orientation (aspect). While this aspect-dependence complicates 

the classification/detection task, it may also be utilized to 

enhance the performance of the classifier/detector. For example, 

consider two targets A and B producing a set of scattered waves 

EA and EB, respectively, over the 4  range of aspect angles (i.e., 

including the angles of azimuth and elevation). If A and B have 

many features in common, the intersection EA EB may be large 

and any classifier attempting to differentiate A and B by using 

the scattered wave at a single aspect angle will produce high 

error rates. However, if multiple scattered waveforms are 

observed at a proper sequence of aspect angles, the error rate 

may be reduced as the ambiguity is resolved by the sequential

information - A and B are less likely to generate the same 

sequence of observations.  

         Multi-aspect scattering from a target can often be modeled 

well with a hidden Markov model (HMM) [7]. Specifically, the 

target-sensor orientations, denoted by , are divided into a set of 

states. Each state is defined by a contiguous subset of  for 

which the associated scattered waves are approximately 

stationary. When performing scattering measurements at a 

sequence of , one is implicitly sampling scattered waves from a 

sequence of target states. The sequence of sampled states is often 

modeled well as a Markov process [2,3,4]. In practice the 

underlying sampled states are unobserved, or “hidden”, and only 

the associated scattered waves are observed. This therefore 

yields a hidden Markov model.  

         For the task of classification, each target is characterized 

by a distinct HMM. After performing a sequence of observations 

OL={O1,…,OL} at L target-sensor orientations, one computes the 

likelihoods P(OL|Tk), k=1,…,K, and applies the maximum 

likelihood (ML) criterion to make a decision, i.e., assigns OL to 

Ti if P(OL|Ti)>P(OL|Tk), Tk  Ti. For detection, one must 

distinguish between targets T and clutter C. Due to the diversity 

of C, usually no HMM is assumed for C and one has a single 

HMM built for T. An observation sequence OL is declared as 

having been generated by T if P(OL|T)>threshold, and it is 

otherwise deemed generated by C.

         In general, the performances of the classifiers or detectors 

are dependent on the choice of observation sequences. For 

example, if targets A and B are similar around = *, then a 

sequence OL observed in the vicinity of * can rarely be 

distinguished as coming from A or B. One should change the 

aspect angle and use those observations in regions of  where A

and B exhibit significant disparities.  

         This paper addresses the problem of optimizing a sequence 

of aspect angles L={ 1,…, L} such that the corresponding 

sequence of observations OL={O1,…,OL} measured at L are 

optimal in the sense that the identity of OL is most easily 

determined. The targets are assumed concealed, therefore the 

absolute values of L are not known and one can only control the 

angular displacements between consecutive observations, i.e., 

L={ 2,…, L} with i= i i 1 if one considers only 

azimuthal angles. Joint optimization of all elements in L is 

usually difficult as the search space grows exponentially with L.

Alternatively, we take a sequential approach here. We assume to 

have observed the sequence OL, associated with angular 

displacements L, and ask what should be the next angular 

displacement L+1 to move the sensor and measure observation 

OL+1 such that the identity of OL+1 is most readily determined.  

         This work can be considered an extension of the research 

in [5,6] to the case for which the statistical-independence 

assumption on the observations at different aspect angles is 

replaced by a hidden Markov assumption. The independence 

II - 1250-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



assumption is usually favored for its ability to achieve a simple 

and usable form of the adaptive-search objective function. We 

demonstrate here that the hidden Markov assumption yields an 

objective function that may also be evaluated easily, constituting 

a search process that accounts for statistical dependence between 

the sequence of observations.  

2. GEOMETRIC HMM WITH AN ANGLE-DEPENDENT 

STATE-TRANSITION MATRIX

The geometric HMM was developed in [2,3] to model multi-

aspect acoustic scattering from an underwater elastic target, and 

it has been extended to radar scattering [4]. A geometric HMM 

utilizes the fact that a state corresponds to a contiguous range of 

aspect angles , allowing one to establish the HMM parameters 

based on geometrical considerations. Assume that the i-th state 

of target Tk , denoted by )(k

iS , resides in the angular region 
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on simple geometrical considerations, assuming all target 

orientations are equally probable, the probability of Tk being in 
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iS  on the first observation is [2] 
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assuming M(k) states for Tk. In (1) we assume the scattered waves 

are only a function of azimuth over 2 . This can be extended to 

the case where dependence on both azimuth and elevation angles 

is considered.  

         For each state )(k

mS , m=1,…,M(k), of target Tk, we define the 

probability of making an observation O. Let ),|( )(

k

k

m TSOP  be 

the probability of observing O in )(k

mS  of Tk. There are numerous 

ways to define ),|( )(

k

k

m TSOP , for example in terms of Gaussian 

mixtures [7]. For simplicity we here employ vector quantization, 

with which O is mapped to a code in a pre-defined codebook. If 

the codebook is composed of N codes C={c1,…,cN}, each 

observed O is mapped to one member of C, and the state-

dependent observation probabilities are quantized in terms of 
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        What remains is defining the Markovian probability of Tk

transitioning from state )(k

iS  to state )(k

jS . In previous studies 

[2,3,4] the angular displacement  between consecutive 

observations was assumed fixed, and the state-transition matrix 

was constant. We now extend this concept to the case in which 

 varies from one observation to the next, to allow adaptive 

sensing. In particular, the state-transition matrix for target Tk,

denoted A(k), is a function of . The (i,j)-th element of A(k)( ),

which denotes the probability of Tk transiting from state )(k

iS  to 

)(k

jS , given the angular displacement , is defined as  
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where mod represent modulus, )(

,

k

jid  is the angular distance 

traveling clockwise from the center of )(k

iS  to the center of )(k

jS ,

the sign of  is defined as positive for clockwise angular 

displacement and negative for counterclockwise angular 

displacement, and )()(k

jw  is a bell-shaped function integrating 

to one. One possible choice of )()(k

jw , and that used here, is  
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       Assuming equally probable occurrence of the K targets in 

consideration, the posterior probability of target Tk after the 

sequence OL={O1,…,OL} is observed is found to be  
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where L={ 2,…, L} are the angular displacements 

associated with OL with i the displacement from Oi 1 to Oi,

and P(Tk)=P(Tk| L) is used. Computation of P(OL| L,Tk) can 

be effected as [7] 
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is the forward variable and qL the state variable for observation 

OL. The forward variable can be computed efficiently in a 

recursive fashion as [7] 

),|()()()( )(
11

1

1
)()()(

1

)(

k
k

jLL

M

i

L
k

ij
k

L
k

L TSqOPaij

k

    (7) 

3. ADAPTIVE SEARCH OF OPTIMAL SENSOR 

ANGULAR DISPLACEMENTS 

3.1. Adaptive Search in the Case of Classification 

Assume that the K possible targets under consideration occur 

with equal probability. After a sequence of observations OL+1 is 

made with associated angular displacements L+1, one has the 

posterior probabilities P(Tk|OL+1, L+1), k=1,…,K. Consider 

P(Tk|OL+1, L+1) as a distribution in k, from which one can use 

the maximum posterior probability (MAP) criterion to determine 

the identity of the interrogated target. To minimize uncertainty, 

one minimizes the entropy of P(Tk|OL+1, L+1) in k, i.e., 

),|(log),|(
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is minimized [8]. One then searches for the L+1 that minimizes 

(8). Joint search of the L unknowns in L+1 is difficult, as the 

search space grows exponentially with L. Alternatively, one can 

use a sequential search strategy, which searches the next angular 

displacement L+1 based on the previously determined 

displacements L={ 2,…, L}. Clearly, the choice of L+1

must be made before OL+1 is actually observed. One can remove 

the dependence of (8) on OL+1 in the search of L+1, by taking 

conditional expectation of (8) with respect to OL+1 given OL, L,

and L+1= , and minimizing the expected entropy. In the case 

of quantized observations, the expected entropy is
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which can be efficiently evaluated in a recursive manner using 

(4)-(7). The detailed derivation of (9) is omitted here for brevity. 

The optimal angular displacement L+1 maximizes the 

reduction in the expected entropy  

)](),|([maxarg
11 LLLkL

gTH O         (10) 

Note the first term in the objective function of (10) is 

independent of and OL+1 and can be treated as a constant in 

the maximization. The operations in (9) and (10) are performed 

sequentially, to determine the angular positions of all 

observations except the first. 

3.2. Adaptive Search in the Case of Detection

When performing detection one usually cannot assume a priori 
knowledge of the possible clutter, as their number is usually 

infinite, unlike the targets, which are of a finite number. 

Therefore for detection a single HMM is built representing the 

targets T and no HMM is built for the clutter set C.

        Assume a sequence of observations OL has been made with 

associated angular displacements L. The next angular 

displacement L+1 for observation OL+1 is determined by 

maximizing the expected logarithmic likelihood of OL+1 having 

been produced by T, i.e., 
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where the expectation is taken with respect to OL+1 conditional 

on OL, L, L+1= , and T. By using logP(OL,OL+1| L, ,T)

= logP(OL+1|OL, L, ,T) + logP(OL| L, ,T) and the fact that 

OL is independent of OL+1, one finds (11) reduces to 
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where H is the entropy. This shows L+1 is equivalently a 

minimizer of the entropy, similar to the case in Sec. 3.1. For 

quantized observations (11) can be expressed as 
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The objective function in (13) can be recursively computed via 

(5)-(7).

       The maximization in (11)-(13) is based on the assumption 

that the object being interrogated is T.  If this assumption is true, 

the resulting optimal angular displacements will produce a 

sequence that maximizes, on average, the HMM logarithmic 

likelihood, with the maximization performed in a “greedy” 

manner, one observation at a time. If the object is not T, then the 

selected sequence of angles will in general not maximize the 

associated likelihood, since in this case there is likely a 

mismatch between the HMM and the scattering characteristics of 

the object under interrogation. In this manner we implicitly 

distinguish between the targets and clutter, using no a priori 

knowledge of the latter. 

4. RESULTS

We consider acoustic scattering data from five underwater 

elastic targets T1, T2, …, T5 [2,3]. For classification, we first 

build a distinct HMM for each of the five targets, assuming a 

uniform angular displacement of 5  between consecutive 

observations. During this training phase the target state 

decomposition is performed using the Baum-Welch algorithm 

[7]. Then the state-transition-probability matrix is augmented to 

handle non-uniform angular displacements, using (2)-(3) with 

the variances in (3) determined from the state decomposition. 

Specifically, if )(ˆ k

j represents the angular extent of state )(k

jS  of 

target Tk, then )(k

j in (3) is defined as 2/ˆ )(k

j .

        It is assumed that a target has been detected, and that it is 

one of the K=5 known targets for which HMMs have been 

trained. We compare three methods. In Method 1 we adaptively 

determine the angular displacements L for L=5 via the search 

strategies in Sec. 3. In Method 2 the angular displacements are 

constant and span the same angular extent (aperture) as the 

adaptive displacements for the same sequence length. In Method 

3 the displacements are constant and equal to 5 .

        The confusion matrices of classifying the 5 targets using 

Methods 1, 2, and 3 are presented in Tables 1-3, respectively. 

These results are averaged across all possible initial angles for 

the length-five (L=5) sequences. The (i,k)-th element of the 

confusion matrix quantifies the probability that a sequence of Ti

is declared as coming from Tk. Tables 1-3 demonstrate that 

Method 1, the adaptive search method, consistently outperforms 

the other two.  

         Fig. 1 shows an example of the objective function as 

defined in (10). In this example we consider target T1, and this 

figure shows a representative shape of the objective function for 

all examples considered. This figure demonstrates that different 

selections of L+1 do indeed lead to different decreases in the 

expected entropy, and it also indicates by the smoothness of this 

function that the maximization in (10) is implemented easily.  

          In the detection example we assume that an HMM is 

available for target T5 [3], this representing the “target of 

interest”. Target T5 is a cylindrical shell, while the six false 

targets are two rocks, a wood log, a 55-gallon drum, a plastic 

container and a small missile-like object (see [9] for details on 

the false targets, or clutter). These false targets were not 

considered when training the HMM for T5. The detection results 

in Fig. 2 are presented for a total of L=5 observations, 

considering all possible initial angles of observation for the 

targets and false targets. The results of Methods 1, 2, and 3 are 

presented in the form of the receiver operating characteristic 

(ROC) curve. It is seen that Method 1, the adaptive method, 

achieves significantly improved results over the other two 

methods, which both use sequences of uniform angular 

displacements. The uniformly-sampled results are shown for 5

and 22  increments, the latter representing the average sample 

rate for the adaptive algorithm. 
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5. CONCLUSIONS 

Hidden Markov models have been used for multi-aspect target 

identification and detection, with the objective of optimizing the 

angular displacement between consecutive observations. The 

method considered here represents an extension of the work on 

optimal sequential experiments [5-6]. Specifically, through use 

of the HMM we have removed the assumption that the sequence 

of measurements are statistically independent. The ideas 

developed here are applicable to multi-aspect sensing, as well as 

other applications for which HMMs are applied sequentially to 

process data. The effectiveness of the presented methods has 

been demonstrated using measured acoustic-scattering data from 

five underwater elastic targets. The results showed that by using 

adaptive search procedure the performance of the HMM 

classifiers and detectors are significantly improved.  

         In the study presented here only the angular motion was 

considered for the sensor. In future research, additive noise may 

be considered and the sensor’s radial motion may also be 

optimized to enhance the signal to noise ratio. In addition other 

measures of entropy may be considered, such as Renyi entropy 

[8], rather than the Shannon entropy used here. 
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       Table 1. Confusion matrix of Method 1 
 T1 T2 T3 T4 T5

T1 0.9750     0.0139 0.0028     0 0.0083 

T2 0.0333     0.8806     0.0833     0  0.0028 

T3 0.0083     0.1333     0.8444     0  0.0139 

T4 0.0056 0  0  0.9639     0.0306 

T5 0.0028     0.0028     0.0056     0.0083  0.9806 

                                        

       Table 2. Confusion matrix of Method 2
 T1 T2 T3 T4 T5

T1 0.9417    0.0278    0.0222     0.0056    0.0028 

T2 0.0722    0.7917   0.1194    0    0.0167 

T3 0.0333    0.2333    0.7167     0     0.0167 

T4 0.0028    0     0  0.9556    0.0417 

T5 0.0056    0.0083    0.0111     0.0361    0.9389 

       Table 3. Confusion matrix of Method 3
 T1 T2 T3 T4 T5

T1 0.7667 0.0139 0.0333 0.0528 0.0133 

T2 0.0694 0.7278 0.1111 0 0.0917 

T3 0.0194 0.1861 0.7083 0.0111 0.0750 

T4 0.0417 0 0.0222 0.9083 0.0278 

T5 0.0389 0.0972 0.0500 0.0389 0.7750 
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Figure 1. An example of the objective function defined in 

equation (10). 
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Figure 2. Receiver operating characteristic (ROC) for 

distinguishing target T5 [3] from six false targets [9]. Results are 

shown for adaptive search of angular displacements as well as 

for uniform angular displacements of 5  and 22 . The latter 

represents the average angular sampling rate of the adaptive 

algorithm.
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