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ABSTRACT

We continue to develop a technique based on the gener-
alised likelihood-ratio test (GLRT) that is capable of iden-
tifying and rectifying direction-of-arrival (DOA) estimation
outliers that arise with the use of any subspace-based DOA
estimation technique. While our previously introduced like-
lihood ratio (LR) maximisation techniques relied upon spe-
cific properties of an assumed Toeplitz covariance matrix, in
this paper we introduce a technique applicable to arbitrary
antenna array geometries.

1. INTRODUCTION

All subspace-based DOA estimation methods suffer from a
well-known rapid degradation in performance as either the
signal-to-noise ratio (SNR) or the number of observed sam-
ples (snapshots) N drops below a certain value that is called
the SNR or N threshold [1, 2]. A considerable amount
of research has been conducted into such threshold condi-
tions, which has determined that a DOA estimation outlier
is caused by a so-called “subspace swap” [3], and more re-
cent attempts to determine from the data whether or not a
subspace swap has actually occurred.

In our previous papers [4, 5], we suggested a novel
GLRT-based approach for subspace-specific outlier identi-
fication. This approach relies upon the straight-forward ob-
servation that the LR generated by the exact (true) covari-
ance matrix appears as a random process whose p.d.f. does
not depend on the signal scenario, but depends only on the
number of antenna array elements (M) and the sample sup-
port N. We suggested that subspace-based DOA estimates
should be augmented by corresponding power estimates, al-
lowing us to form a covariance matrix model which is then
used to compute the LR. Comparison of this LR with the
threshold provided by the above scenario-free distribution
allows us to identify potential outliers. This is because of
another straight-forward observation that any truly ML es-
timates must generate a LR that exceeds that of the exact
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covariance matrix parameters. We demonstrated in [4, 5]
that for linear antenna arrays, DOA estimation outliers that
arise with the use of any subspace-based DOA estimation
technique could be reliably determined, since they gener-
ate LRs that are significantly distinct from the scenario-free
p.d.f. of the exact covariance matrix.

At the same time, we showed that if the sample support
and/or SNR continue to decrease, then we eventually reach
the regime where completely erroneous estimates may gen-
erate very high LR values. This final ML breakdown is in-
herent, and cannot be predicted nor cured within the ML
paradigm. This demonstrates the existence of ML “perfor-
mance breakdown” conditions, together with an important
“gap” between these ML threshold conditions and those of
any particular subspace-based DOA estimation algorithm.

Our proposed outlier mitigation technique (“cure”) for
uniform and for sparse linear arrays (that have a uniform
co-array) [4, 5] heavily relies upon the Toeplitz properties
of the underlying covariance matrix. This paper describes
techniques for the general case of arbitrary antenna arrays,
where this approach could not be used.

While some quite efficient methods for rectifying co-
variance matrix estimates for arbitrary geometry arrays
have been introduced [6], unfortunately there is as yet
no known existence condition (analogous to the famous
Carathéodory theorem [7]) for arbitrary geometries, and so
a LR-maximisation technique based on covariance matrix
parameters (similar to LR optimisation over the class of
Toeplitz covariance matrices [5]) is not applicable here. For
this reason, we propose a new GLRT-based scheme for “out-
lier rectification” that can be used for any array geometry.

2. PROBLEM FORMULATION

Consider an array of M omnidirectional sensors whose
steering vector is s(f), where 6 is a plane-wave signal’s
DOA. For simplicity of description, assume here that the
array and sources are coplanar. Assuming m < M uncor-
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related Gaussian sources, we may express the vector of ob-
served sensor outputs (the “snapshot”) at time ¢ as

y(t) = S(0) z(t) + n(t) for t=1,...,N (1)

where xz(t) € C™*! are the Gaussian signal ampli-
tudes with DOAs @ = [f;, ...,6,,]" and powers P =
diag[p1, -..,pm], the array-signal manifold matrix is
S(0) =[s(61), ...,8(0,)] € CM>™ and n(t) € CM*Tis
Gaussian white noise of power pg:

z(t) ~CN(m, 0, P), n(t) ~CN(M, 0, poln) (2)

where CA/(M, 0, R) denotes a complex (circular) Gaussian
distribution of dimension A with zero mean and covariance
matrix R.

Therefore the input data is described by the complex
Gaussian distribution CA/(M, 0, R), where

R = SO0)PSO)F +poIn. (3)

We assume that the snapshots are statistically independent:

E{lyt)y ()} = @)

R for t1 = tQ

0 for tl 75 tQ s
and so the sufficient statistic for any inference regarding this
data is the direct data covariance (DDC) (sample) matrix

I
= N;y(t) y" (1) 5)

where N R is described by the complex Wishart distribution
CW(N, M; R) [8].

In this paper, we concentrate on the performance-
breakdown issues of subspace-based DOA estimation tech-
niques, and therefore can assume that the number of sources
m (m < M) is known, or has been estimated by some rou-
tine, such as the Wax—Kailath ITC technique [9]. (More-
over, in dealing with subspace-based techniques, we also
assume that the conditions for identifiability have been
met, and that the array-signal manifold matrix S(8) is not
column-rank deficient.) Thus the eigendecomposition of R
is

R = 04,07 4+ 04,08 ©)
where U, are the m signal-subspace eigenvectors; A, =
diag[A1, ..., Am] is the m-variate diagonal matrix of
signal-subspace eigenvalues; while U, and A,, are similarly
the (M —m)-variate matrices relating to the noise-subspace.
If we choose MUSIC as our particular DOA estimation
technique, then the m DOA estimates § = [0y, ...,60,,)
are computed from the coordinates of the m largest maxima
in the MUSIC pseudo-spectrum

F0) = [s" ) U, U s9)]7". (7

Given the DOA estimates 6, the corresponding power esti-
mates p are found in the traditional manner [10]:

P = diag  {#5"(8) [k~ 5oTu] SB) 5} (®)

where
L 1 Mo—m
B=1S"O)SO ", o= O Amis O
j=1

and diag | {-} means take the non-negative diagonal ele-
ments to form the vector, while replacing the negative el-
ements (if any) by zeros.

Given the DDC matrix R and the MUSIC-generated
model matrix

R=SO0)PSO) +poIn, (10)

we need to decide whether the set of DOA estimates 6 con-
tains one or more outliers; identify which estimates are out-
liers (if any); and replace them by “proper” DOA estimates.

3. GLRT-BASED OUTLIER IDENTIFICATION

Given the sample covariance matrix R and the MUSIC-
generated model matrix R, the sphericity test [11] for the
hypothesis

Hy : E{R_% RR_%} =colp against

H; : 5{R_%RR_%}7&C()IM, (an

co >0

may be used to accept or reject this model. For Gaussian
mixtures, the LR for this test is Y(R) = 7' (R), where we
have implicitly defined 7 as follows:

N
det(R'R)

[% tr (R-1R)

Y(R) = v (R) = — (12)

(0 < y(R) < 1), with the set of estimated parameters
{6, p/Po}aw being those that yield the global maximum
of the LR W(R) which coincides with the global maximum
of the (stochastic) likelihood function [4, 5].

Since  the  ML-generated  covariance  matrix
R, (8, p/po) belongs to the same admissible set as
the true covariance matrix R, we obviously have

Y(Rar) > v(R). (13)

Therefore any set of parameters estimates {é, D, Po} (in-
cluding our MUSIC-generated ones) that are deemed to be
sufficiently close to ML estimates must obey the similar
condition

Y(R) > v(R). (14)
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However, when y(R) < 7(R), then the set of (MUSIC-
generated, say) estimates is not statistically close enough to
the ML estimates, and should be disregarded, since it con-
tains one or more outliers.

Recall that in extreme circumstances, when erroneous
(DOA) estimates generate high LR values that meet condi-
tion (14), it means that such estimates are “as good as” the
true ones in terms of the ML or LR criteria, and so cannot
be predicted nor cured within the ML paradigm.

Naturally, in practical applications the exact covariance
matrix R is unknown, in which case the strict inequality
in (14) is replaced by statistical thresholding that heavily
exploits the fact that the p.d.f. for v(R) does not depend
on R, but is exhaustively specified by the two parameters
M and N. Indeed, in [5], we derived the following (exact)
expression for the p.d.f. of o (R):

M2_1 M2_2 M2 M
_MGM"O 0‘ M T Mt M

f(v0) =6(M,N) ’Y(])V M,M

0,1,....M—1
(15)
where
6(M}N) _ (27T)M2—1M1—22MN = F(MN)
[[=, T(V=j+1)
(16)

and G%?M (+) is Meijer’s G-function [12]. The moments of
this distribution are

T(MN)
L(M[N +h])
7)
Thus a set of (MUSIC-derived, say) estimates {[9 D, Do}
that generates a covariance matrix R is treated as “proper”
(not containing outliers) if the threshold condition

M .
 I(N—j+1+h
[[=: T(N —j+1)

Y0(R) > a (18)

is satisfied, where

/0 f(v)dy = p (19)

and p is any desired probability of incorrect identification
(where the true ML estimate is treated as containing an out-
lier).

This technique addresses the first part of our identifica-
tion problem. While this part does not depend on the spe-
cific antenna array geometry, and so is essentially the same
as in the linear array case [4, 5], the following steps must
replace the Toeplitz matrix-related approach that was devel-
oped there.

First, we try to identify which particular DOA esti-
mates are the outliers. Initially, we may use the MUSIC-
generated DOA estimates to initialise a direct (uncon-
strained) LR maximisation over the set of (2m + 1) param-
eters {[9, D, Po}. In rare cases, where the MUSIC outlier

is in the convex proximity of an appropriate LR maximum,
we may expect to get a solution that satisfies the thresh-
old condition (18), and therefore the new set of estimates
would not contain an outlier. If this occurs, then the outlier
“identification-and-cure” problem is immediately solved.
Unfortunately, this desirable outcome is rare; mostly the di-
rect LR maximisation converges to an inappropriate local
extremum that does not pass the threshold condition (18).

Assume for the moment that the estimated parameter set
contains at most one outlier. Let us exclude in turn each
source from the model by defining

Ry=R-p;s(0;)s"6;) (G=1,....,m) (0

then we propose computing the function

det(l?;1 R)

Fj = v(R)) = (21)

1 st ]
Ltr (R; R)]

and then finding the maximum of F; over j = 1, ..., m.
In other words, any source whose exclusion from the model
does not lead to a significant degradation in LR can be con-
sider an outlier.

The rationale behind this approach is that an incorrect
DOA estimate cannot contribute significantly to the LR,
while the defect in LR (18) is due to the fact that the correct
DOA estimate is missing in R. Hence, if excluded from the
model, any erroneous source should not invoke a significant
additional degradation in LR, compared with the original
fy(f%). On the contrary, if a correctly estimated source is re-
moved from the model, then a significant LR degradation
should be observed.

4. OUTLIER RECTIFICATION

To summarise, if the LR does not exceed the threshold con-
dition, then we assume our parameter set contains an outlier.
Having identified the most likely outlier by removing each
in turn, the final step is to replace the suspected outlier by
a proper (ML) estimate. The GLRT philosophy stimulated
the following simple two-step rectification algorithm.

Let RY be the MUSIC-generated covariance matrix
with one outlier removed from the model. We introduce the
MUSIC-like function

FEN @) = 70(REH) (22)
where
RED = RED +50)s(0)s"(6)  (23)

where p(6) is the estimate of the additional source with az-
imuth 6 calculated using (8). We then simply find the maxi-
mum of the function f(~+1)(6) and treat the DOA estimate

61D = arg max FED () (24)
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as the rectified outlier. In other words, to the (m — 1) re-
duced set of DOAs, we search all azimuths to find the most
likely additional DOA.

The second step is to use the new m set of DOAs and
powers as initialisation for a further application of the LR
maximisation routine.

If this final set of refined parameters {9 D, Do} exceeds
the LR threshold, then it is accepted, otherwise it is assumed
that the original set contained more than one outlier, and
hence we repeat the outlier identification and outlier recti-
fication routines to eliminate further outliers. On rare oc-
casions, this cycle may repeat indefinitely (so far, we have
encountered it with probability less than 10~°), in which
case the iterations are terminated at some maximum limit,
and that set of parameter estimates is either disregarded, or
other optimisation routine (such as random search) is ap-
plied in order to satisfy the LR lower bound.

A companion paper [13] discusses the application of this
general method to the particular case of uniform circular an-
tenna arrays, and analyses the results of Monte-Carlo simu-
lations for DOA estimation in the difficult threshold region.

5. SUMMARY AND CONCLUSIONS

We have presented a new GLRT-based approach for the
identification and rectification (“prediction and cure”) of
DOA estimation outliers that is independent of antenna ar-
ray geometry but relates to any particular subspace-based
DOA estimation technique. A set of DOA estimates, aug-
mented by corresponding power estimates, form a model
covariance matrix that is treated as containing a DOA outlier
if it generates a LR that does not exceed a threshold value set
by a scenario-free p.d.f. In turn, if necessary, one outlier is
identified as being the one that least degrades the LR when it
is excluded from the covariance matrix model. Rectification
of the DOA outlier is accomplished by a MUSIC-like one-
dimensional search technique that conditionally maximises
the LR. This provides a new set of m DOAs and powers
that initialises a further refinement by another application
of the LR maximisation routine. This cycle is repeated until
all outliers are rectified, as judged by the LR eventually ex-
ceeding the threshold value. As discussed in the companion
paper, the efficiency of this technique is found to be high.
This method could be generalized for partially correlated
sources, by using a suitable Hermitian matrix in (8).
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