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ABSTRACT

PARAllel FACtor (PARAFAC) analysis is an extension of
low-rank matrix decomposition to higher-way arrays. It
decomposes a given array in a sum of multilinear terms.
PARAFAC analysis generalizes and unifies common array
processing models (like joint diagonalization and ESPRIT);
it has found numerous applications from blind multiuser de-
tection and multi-dimensional harmonic retrieval, to clus-
tering and nuclear magnetic resonance. The prevailing fit-
ting algorithm in all these applications is based on alter-
nating least squares (ALS) optimization, which is matched
to Gaussian noise. In many cases, however, measurement
errors are far from being Gaussian. In this paper, we de-
velop an iterative algorithm for least absolute error fitting of
general multilinear models, based on efficient interior point
methods for Linear Programming (LP). We also benchmark
its performance in Laplacian, Cauchy, and Gaussian noise
environments, versus the respective CRBs and the common-
ly used ALS algorithm.

1. INTRODUCTION

The PARAFAC model is a useful data analysis tool that has
recently found applications in array signal processing and
communications [1], [2]. When generalizing the concept of
low-rank decomposition to higher-way arrays, PARAFAC is
instrumental in the analysis of data arrays indexed by three
or more independent variables, just like Singular Value De-
composition (SVD) is instrumental in ordinary matrix (two-
way array) analysis. In most applications of PARAFAC
analysis, the ALS regression procedure is used to fit the
model parameters [1], [2]. Least Squares (LS) regression
is optimal (in the maximum likelihood sense) when mea-
surement errors are additive i.i.d. Gaussian. Gaussianity
is an often-made assumption, due to the central limit the-
orem, but also for tractability considerations. However, in
many applications the measurement errors are far from be-
ing Gaussian random variables [3].
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The Least Absolute Error (LAE) criterion is often used
as a robust alternative to LS. LAE regression is optimal (in
the maximum likelihood sense) when measurement errors
are additive i.i.d. Laplacian. The Laplacian distribution is
more heavy-tailed than the Gaussian one; therefore, it is
better suited to model impulsive noise and outliers. An-
other distribution commonly used for modelling impulsive
noise is the Cauchy, and, more generally, the class of α-
stable distributions [3]. It is therefore of interest to develop
PARAFAC regression procedures that optimize the LAE fit-
ting criterion.

In this paper we develop such an iterative procedure that
makes use of LP. The performance of the proposed algo-
rithm is illustrated by means of simulations and compared
to the pertinent Cramér-Rao bounds (CRBs) and Trilinear
ALS (TALS) procedure [1].

2. PARALLEL FACTOR ANALYSIS

We introduce notation that will be useful in the sequel. Con-
sider an I ×J ×K three-way array X with typical element
xi,j,k and the F -component trilinear decomposition

xi,j,k =

F∑
f=1

ai,f bj,fck,f (1)

for all i = 1, . . . , I , j = 1, . . . , J and k = 1, . . . , K. Here
ai,f stands for the (i, f)-th element of I ×F matrix A, and
similarly bj,f and ck,f stand for (j, f)-th and (k, f)-th ele-
ments of J ×F and K×F matrices B and C, respectively.
Matrices A, B and C are in general complex-valued. Equa-
tion (1) expresses xi,j,k as a sum of F rank-one triple prod-
ucts; it is known as trilinear decomposition, or PARAFAC
analysis model of xi,j,k.

Let Ai = Di(A) denote the operator which takes the
i-th row of matrix A and produces a diagonal matrix by
placing this row on the main diagonal. Then by “slicing”
the three-dimensional array X in a series of “slabs” (two-
dimensional arrays), we obtain

Xi = BAiC
T , i = 1, . . . , I (2)
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Here such a slicing is made perpendicular to the ith dimen-
sion, i.e., Xi := [xi,·,·] is the J × K two-dimensional slice
of X corresponding to the given index i. Two other types of
slicing of X are useful in understanding the algorithm that
will be developed in the next section. They are given by

Y j = CBjA
T , j = 1, . . . , J (3)

Zk = ACkBT , k = 1, . . . , K (4)

where Bj = Dj(B), Ck = Dk(C), while the K×I matrix
Y j and I × J matrix Zk are defined as Y j := [x·,j,·] and
Zk := [x·,·,k], respectively.

3. TRILINEAR ALTERNATING LAE REGRESSION
BASED ON LINEAR PROGRAMMING (TALAE-LP)

In practice, the three-way array will contain measurement
noise, i.e. X̃ = X + V where the (i, j, k)th element of X̃

can be written as

x̃i,j,k = xi,j,k + vi,j,k (5)

and vi,j,k denotes the additive complex i.i.d. zero-mean
measurement noise with statistically independent real and
imaginary parts.

The PARAFAC fitting problem is then formulated as fol-
lows. We are given the noisy data X̃ and wish to estimate
A, B, and C. Let us introduce the tall matrix

X =

⎡
⎢⎣

X1

...
XI

⎤
⎥⎦

JI×K

=

⎡
⎢⎣

BA1

...
BAI

⎤
⎥⎦CT = (A � B)CT (6)

where � stands for the Khatri-Rao matrix product. Simi-
larly, we introduce the matrix of noisy data

X̃ =

⎡
⎢⎣

X̃1

...
X̃I

⎤
⎥⎦ =

⎡
⎢⎣

X1

...
XI

⎤
⎥⎦ +

⎡
⎢⎣

V 1

...
V I

⎤
⎥⎦ (7)

Then the conditional Maximum Likelihood (ML) estima-
tion problem for the matrix C given matrices A and B and
assuming i.i.d. Gaussian measurement noise is the LS fit-
ting problem minC ‖X̃ − (A � B)CT ‖2

F where ‖ · ‖2
F

denotes the Frobenius matrix norm.
If the measurement noise is i.i.d. Laplacian (with i.i.d.

Laplacian-distributed real and imaginary parts in the com-
plex case), then ML estimation is equivalent to LAE regres-
sion. Some manipulations are necessary in order to express
the absolute error criterion in the form of a convenient vec-
tor �1 norm. Towards this end, introduce the operator F(·)

s = F(S) =

⎡
⎢⎣

S̆·,1

...
S̆·,L

⎤
⎥⎦ , S̆·,l =

[
Re{S·,l}
Im{S·,l}

]
(8)

where S is a complex-valued M × L matrix, and S·,l de-
notes its lth column. The following property holds:

F{DF } = (I ⊗ G{D})F{F } (9)

where I is the identity matrix of a commensurate dimen-
sion, D and F are any complex-valued matrices of com-
mensurate dimensions,⊗ denotes the Kronecker matrix pro-
duct, and G{D} stands for the operator

G{D} =

[
Re{D} −Im{D}
Im{D} Re{D}

]
(10)

Using property (9), we find that the absolute error model
fitting criterion can be written as

‖x̃ − (IK ⊗ G{A � B})c‖1 (11)

i.e., through the �1 norm of a real-valued vector. Here, x̃ =

F(X̃), c = F(C), and the dimension of the identity matrix
is clarified by means of the subscript K.

Using the other two ways of slicing the array X , we
introduce the matrices Y = (B � C)AT and Z = (C �
A)BT . Furthermore, we introduce

Ỹ =

⎡
⎢⎣

Ỹ 1

...
Ỹ J

⎤
⎥⎦

KJ×I

, Z̃ =

⎡
⎢⎣

Z̃1

...
Z̃K

⎤
⎥⎦

IK×J

(12)

where Ỹ j , j = 1, . . . , J , and Z̃k, k = 1, . . . , K are the
noisy slabs of X̃ along corresponding dimensions.

Now we have all notations necessary to explain the new
fitting algorithm.

The idea behind this algorithm is similar to that of TALS
regression for Gaussian noise [2] and is as follows: each
time, update a subset of parameters using the LAE crite-
rion, conditioned on previously obtained estimates of the
remaining parameters; proceed to update another subset of
parameters; repeat until convergence.

In more detail, we first initialize matrices A and B ran-
domly or by single-invariance ESPRIT when applicable [1],
[2]. Then, given the matrix X̃ , and these initial estimates of
A and B (which we denote hereafter as Â and B̂), our pur-
pose is to find the estimate of the matrix C which minimizes
the norm (11). Specifically, we have to find the estimate of
C by solving the following optimization problem:

ĉ = arg min
c

‖x̃ − (IK ⊗ G{Â � B̂})c‖1

Ĉ = (F−1{ĉ})T (13)

for given x̃, Â and B̂. In (13), F−1{·} denotes the in-
verse operator to F{·} of (8). Introducing the vector e =
[1, 1, . . . , 1]T and the vector of slack variables q1 (both of
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commensurate dimensions), we can equivalently write the
problem (13) as

min
c, q1

eT q1 subject to x̃ − (IK ⊗ G{Â � B̂})c � q1

x̃ − (IK ⊗ G{Â � B̂})c � −q1

where � denotes the usual pointwise ordering. This opti-
mization problem is an LP problem that can be very effi-
ciently solved using interior-point methods [4].

Using the second way of slicing the three-dimensional
array (i.e., working with the data ỹ = F(Ỹ )) and exploiting
the property (9), we obtain that the estimate of A can be
found by solving the following optimization problem:

â = arg min
a

‖ỹ − (II ⊗ G{B̂ � Ĉ})a‖1

Â = (F−1{â})T (14)

with given ỹ and previously estimated B̂ and Ĉ. This prob-
lem can be rewritten as the following LP problem:

min
a, q2

eT q2 subject to ỹ − (II ⊗ G{B̂ � Ĉ})a � q2

ỹ − (II ⊗ G{B̂ � Ĉ})a � −q2

where q2 is the vector of slack variables of commensurate
dimension.

Finally, using the third way of slicing the three-dimensi-
onal array and applying the property (9), we can find the es-
timate of B by solving the following optimization problem:

b̂ = arg min
b

‖z̃ − (IJ ⊗ G{Ĉ � Â})b‖1

B̂ = (F−1{b̂})T (15)

with given z̃ and previously estimated Â and Ĉ. This prob-
lem is equivalent to the following LP problem:

min
b, q3

eT q3 subject to z̃ − (IJ ⊗ G{Ĉ � Â})b � q3

z̃ − (IJ ⊗ G{Ĉ � Â})b � −q3

where q3 is the vector of slack variables of commensurate
dimension.

Fitting proceeds by updating one matrix at a time, con-
ditioned on interim estimates of the other two, in a round-
robin fashion. Note that the conditional update of any given
matrix may either improve or maintain but cannot worsen
the current fit. Monotone convergence of the fit (but not nec-
essarily to the global minimum) follows directly from this
observation. The per-iteration complexity of TALAE-LP is
equal to the cost of solving LP problems [4]. This is of the
same order of complexity as computing a matrix pseudo-
inverse in the TALS method [1] and can be estimated as
O(F 3 + FIJK). Overall complexity depends on the num-
ber of iterations, which varies depending on problem-speci-
fic parameters and the given batch of data.
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Figure 1: RMSEs versus SNR. Gaussian channel noise.

4. SIMULATIONS

Let us compare the performance of the proposed TALAE-
LP algorithm with that of the conventional TALS method,
and against the pertinent CRB. The example of blind PARA-
FAC multiuser detection for a Direct-Sequence Code Di-
vision Multiple Access (DS-CDMA) communication sys-
tem [1] is simulated. For the DS-CDMA application, the
elements of the matrices A, B and C have the following
meanings: ai,f is fading/gain between user f and antenna
element i; bj,f is j-th chip of the spreading code of user
f ; ck,f is k-th symbol transmitted by user f . Correspond-
ingly, matrix A is the channel matrix, B is the spreading
code matrix, and C is the user symbol matrix, all unknown
to the receiver. Here, F is the number of users, I is the total
number of antenna elements in the array, J is the number of
Intersymbol Interference (ISI)-free chips per symbol, and
K is the length of the transmitted sequence of symbols.

The data X are contaminated by channel noise. Three
models of the channel noise are used. One is Gaussian
noise, while the other two are Laplacian and Cauchy noise.

For LS fitting, we use the COMFAC algorithm [1] which
is a fast implementation of TALS. The MOSEK convex op-
timization MATLAB toolbox [5] is used to solve LP prob-
lems associated with our TALAE-LP algorithm. Scale and
permutation ambiguities are inherent to this blind separation
problem [1]; the scale ambiguity manifests itself as a com-
plex constant that multiplies each individual row of C. For
constant-modulus transmissions, this ambiguity can be re-
moved via Automatic Gain Control (AGC) and differential
encoding/decoding. We assume differentially-encoded user
signals. For the purpose of performance evaluation only,
the permutation ambiguity is resolved using a greedy LS
(C, Ĉ) column-matching algorithm.

We present Monte Carlo simulations that are designed to
assess the Root Mean Square Error (RMSE) performance of
the aforementioned algorithms. The parameters used in the
simulations are as follows: N = number of Monte Carlo tri-
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Figure 2: RMSEs versus SNR. Laplacian channel noise.

als = 100; F = 2; I = 8; J = 8; K = 20; and α = 1. Here,
α is the characteristic exponent which determines the heav-
iness of the tail of the symmetric α-stable distribution used
in our third example (α = 1 yields the Cauchy distribution).
The associated symmetric α-stable characteristic function is
given by φ(ω) = exp{−γ|ω|α}, where γ is a positive con-
stant related to the scale of the distribution. The geometric
Signal-to-Noise Ratio (SNR) in this case is defined as [6]
SNRCauchy = A2

4Cgγ2 , where Cg = eCe ≈ 1.78 and A is the
magnitude of the noise-free signal. For the Gaussian case,
the geometric SNR is equivalent to the standard SNR, and
in the Laplacian case we use the standard SNR, since Lapla-
cian distribution does not belong to the class of symmetric
α-stable distributions.

Throughout the simulations, we assume that the noise
power is normalized to be equal to 1. User signals are re-
drawn from an i.i.d. Bernoulli distribution and differentially
encoded for each Monte Carlo trial. BPSK modulation is
used for all user signals. The gains of the channel matrix A

and the elements of the spreading code matrix B are gen-
erated as i.i.d. Gaussian unit variance random variables and
are fixed in each Monte Carlo trial, while re-drawn from one
trial to another.

Figures 1, 2 and 3 display the performance of the afore-
mentioned algorithms in terms of RMSE versus the SNR for
the case of Gaussian, Laplacian and Cauchy noise, respec-
tively, and compare the performance with the corresponding
CRBs. Figures 1 and 2 demonstrate that in the case of Gaus-
sian noise, the TALS method performs slightly better than
the proposed robust TALAE-LP algorithm, while in the case
of Laplacian noise, the TALAE-LP algorithm has slightly
better performance as compared to the TALS method. In
the case of Cauchy noise (Fig. 3), the TALS method breaks
down, while the TALAE-LP algorithm is not affected and is
close to the CRB. The degradation in performance relative
to TALS in the Gaussian case can be considered as a mod-
erate price for greatly improved robustness against heavy-
tailed Cauchy noise.
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Figure 3: RMSEs versus SNR. Cauchy channel noise.

5. CONCLUSIONS

An iterative algorithm for robust fitting of trilinear PARA-
FAC models has been proposed. The algorithm relies on
alternating optimization using LP. The proposed algorithm
outperforms the popular alternative LS PARAFAC fitting
procedure under heavy-tailed noise. Even though our algo-
rithm is matched to the Laplacian distribution, it performs
very well under Cauchy noise. Furthermore, its performan-
ce degrades only moderately under Gaussian noise.
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