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ABSTRACT

In this paper we propose a new method for modeling practical
non-Gaussian and non-stationary noise in array signal processing.
GARCH (Generalized Autoregressive Conditional Heteroscedas-
ticity) models are introduced as the feasible model for the heavy
tailed probability density functions (PDFs) and time varying vari-
ances of stochastic processes. We use GARCH noise model in the
maximum likelihood approach for the estimation of Direction-Of-
Arrivals (DOAs). Our analysis exploits time varying variance and
spatially non-uniform noise in sensor array signal processing. We
show through simulations that this GARCH modeling is suitable
for high-resolution source separation and noise suppression in a
non-Gaussian environment.

1. INTRODUCTION

Array signal processing problems such as estimation of the

parameters of superimposed complex signals corrupted by

noise, Time Difference Of Arrival(TDOA) and DOAs at sen-

sors of arrays can all be reduced to general case of esti-

mation of the unknown parameters. Due to their excellent

asymptotic and threshold properties, Maximum Likelihood

(ML) methods play an important role in array signal pro-

cessing [5, 6]. In these methods, the key assumption is

the noise model; i.e., additive noise covariance, that is used

in estimation of unknown parameters. In the natural en-

vironment, the measurements of ambient noise shows that

we have non-Gaussian and non-stationary process[4]. Non-

Gaussian impulsive noise has attracted considerable atten-

tion from researchers in various fields of applied signal pro-

cessing due to their close fit to a variety of underlying physi-

cal processes. Such is the case in the communications chan-

nels for additive ambient noise and noises being generated

from different natural and man made sources and their ef-

fects when propagating to the receiver. All the above men-

tioned factors give a stochastic volatility nature to the re-

ceived signal. Hence, we accept a model in which some

kind of changing variance (volatility) is included. Thus,

a proper model presentation which could best and simply

describe the different features of the actual ambient noise

affecting the desired signal is an essential part of an array

sensor processing. Besides, in many actual applications,

such as those receivers having non-ideal hardware, involv-

ing sparse sensors with prevailing external noise or non-

ideal hardware receivers, see [3] and the references therein,

the assumed noise model may be simplified by different sen-

sor noise variances. In the last decade, after the seminal

works by Engle [1] and Bullerslev [2] there has been a grow-

ing interest in time series modeling of changing variance or

volatility. These models have found a great application in

financial time series analysis. Generalized Autoregressive

Conditional Heteroscedasticity (GARCH) [2] is a time series

modeling technique that uses past variances and the past

variance forecasts to forecast future variances. A series is

defined to be heteroscedastic if its variance changes over

time. GARCH models account for two main characteristics,

excess kurtosis; i.e., heavy tailed probability distribution,

and the volatility clustering; i.e., large changes tend to fol-

low large changes and small changes tend to follow small

ones, compatible to a large extent to the ambient noises in

a natural environment. We now suggest a more realistic dy-

namic model for the ambient noise largely in parts due to the

facts that 1) the commonly used model for environmental

additive noise exhibits heavier tail than the standard normal

distribution [4], and 2) the volatility clustering suggests a

time series model in which successive disturbances are un-

correlated but dependent, that is, a more logical modeling

for the dynamic of the ambient noise. Hence, the GARCH

model is a good candidate for the additive noise model in the

DOA problem for array signal processing, therefore, in this

paper, we propose to assume a GARCH noise model. This

paper is organized as follows: Section 2 contains the math-

ematical formulation of the problem, the data model and in

section 3 the GARCH modeling for array signal processing.

Section 4 considers maximum likelihood estimation in ar-

ray signal processing for estimation of DOAs of impinging

sources. A new method of direction finding from ML in con-
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junction with GARCH noise modeling is given in section 5,

and section 6 is devoted to the simulation results of applying

the GARCH noise model to GARCH and underwater acoustic

ambient noises. Conclusions are provided in section 7.

2. PROBLEM FORMULATION

We assume an array of L sensors receive D (D<L) narrow-

band source signals with unknown DOAs {ψ1, ..., ψD}. The

kth snapshot vector of sensor array outputs can be modelled

as

x(k) = V(ψ)f(k) + n(k), k = 1, ...,K, (1)

where,

V(ψ) � [v(ψ1), ..., v(ψD)], (2)

is the L×D steering matrix composed of the signal direction

vectors v(ψi), i = 1, ...,D, ψ�{ψ1, ..., ψD}T is the D×1
vector of the unknown signal DOA, f(k) is the D×1 vector

of the source waveforms, n(k) is the L×1 vector of sensor

noise, K is the number of snapshots, and (·)T stands for the

transpose operation. In a more compact notation, (1) can be

rewritten as

X = V(ψ)F + N, (3)

where,

X� [x(1), ..., x(K)], L×K array data matrix;
F� [f(1), ..., f(K)], D×K source waveform matrix;
N� [n(1), ..., n(K)], L×K sensor noise matrix;

In general, the sensor noise is assumed to be a zero-mean

spatially and temporally white Gaussian process with the

unknown diagonal covariance matrix

Q � E{n(k)nH(k)} = diag{σ2
1 , σ2

2 , ..., σ2
L}. (4)

In what follows, the signal waveforms will be assumed to

be deterministic unknown processes. The signal snapshots

are assumed to satisfy the following model:

x(k) ∼ CN (Vf(k), Q) (5)

And,

R � E{x(k)xH(k)} = VPVH + Q (6)

is the array covariance matrix, P � E{f(k)fH(k)} is the

source waveform covariance matrix, CN stands for the com-

plex Gaussian distribution, and (·)H for the Hermitian trans-

pose operation.

3. GARCH MODEL

GARCH stands for Generalized Autoregressive Conditional

Heteroscedasticity, generally speaking, in Heteroscedasticity we

consider time series with time varying variance; i.e., volatil-

ity, conditional implies a dependence on the observation

of the immediate past, and autoregressive describes a feed-

back mechanism that incorporates past observations into the

present. GARCH then is a mechanism that includes past

variance in the explanation of the future variance. How-

ever in [1, 2, 8, 9], it is shown that a time-varied σ2(k)
over time is more useful than a constant for modeling non-

Gaussian and non-stationary phenomena such as economic

series. GARCH models account for heavy tailed PDF as ex-

cess kurtosis and volatility clustering a type of heteroscedas-

ticity. Now, in order to formulate the time-series volatility

and the dependence on the past observations we let ε(k)
denote a real-valued discrete-time stochastic process, the

GARCH (p, q) process is then given by [2],

ε(k) = η(k)σ(k), η(k) ∼ N (0, 1), (7)

σ2(k) = α2
0 +

q∑

i=1

α2
i ε

2(k − i) +
p∑

i=1

β2
i σ2(k − i), (8)

where η(k) is a sequence of independent and identically dis-

tributed random variables with zero mean and variance of

one, and N denotes the standard normal probability density

function. In practice, η(k) is often assumed to follow the

standard normal or a student-t distribution.

4. MAXIMUM LIKELIHOOD ESTIMATION

Under the above assumption the joint probability density

function of the observed snapshots from the array given the

signal and noise parameters is expressed as

f
X|θ (X) =

K∏

k=1

1
det[πQ(θ)]

exp{−[x(k) − V(ψ)f(k)]H

Q−1(θ)[x(k) − V(ψ)f(k)]} (9)

where

θ = [fT (1), ..., fT (K),ψT ,σ2T

]
T

(10)

is the vector of unknown signal and noise parameters, and

σ2 = [σ2
1 , σ2

2 , ..., σ2
L]T . Hence, the Log-Likelihood func-

tion for Deterministic Maximum Likelihood (DML) [7] is

expressed as

L(θ) = −
K∑

k=1

ln(det[πQ(θ)]) +
K∑

k=1

{[x(k) − V(ψ)f(k)]H

Q−1(θ)[x(k) − V(ψ)f(k)]}. (11)

In the following section we exploit GARCH model noise

where (11) and (8) are jointly used to estimate the parame-

ters of the signal and noise.
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5. PROPOSED METHOD

Signal processing concerns itself primarily with the treat-

ment of signal in noise which for various reasons, is most

often assumed to be Gaussian. However, measurement of

background or ambient noise in natural environments shows

that the noise can sometimes be significantly non-Gaussian

[4]. Therefore signal processing algorithms that are opti-

mized for Gaussian noise may degrade significantly in a

non-Gaussian and non-stationary environment. On the other

hand in array signal processing algorithms such as DOA es-

timation the noise models significantly effect performance.

Under the above assumption we use the GARCH model for

noise in DOA estimation and source localization. We em-

ploy the DML approach, equations (1-6), we use the vec-

tor representation of the GARCH (p, q) model for the noise

which can be written as

σ2
� (k) = α2

�,0+
p∑

i=1

α2
�,in

2
�(k−i)+

q∑

j=1

β2
�,jσ

2
� (k−j), (12)

where � = 1, 2, .., L, k = 1, 2, ...,K, index � denotes sen-

sors index and k stands for snapshot index. Consequently,

we note that in this model, noise is not uniform across L
sensors which is a realistic modeling resting on the assump-

tion of non-uniformity [3], and non-stationarity ; i.e., time-

varying variance. By using equation (12) in (11) it can be

shown that the following holds for log-likelihood :

Lp(θ) =−
K∑

k=1

L∑

�=1

ln(σ2
� (k)) +

K∑

k=1

{[x(k) − V(ψ)f(k)]H

Q−1(θ)[x(k) − V(ψ)f(k)]} (13)

where

θ = {fT (1), ..., fT (K),ψT , α2
�,0, α

2
�,i, β

2
�,j}, (14)

� = 1, 2, .., L, i = 1, 2, ..., p, j = 1, 2, ..., q, and Lp(·)
stands for the proposed Log-likelihood function to be maxi-

mized over the vector of unknown parameters θ through ML

approach by

θ̂ = arg max
θ

{Lp(θ)}. (15)

The following section shows the simulation for the proposed

method using (12,13,15).

6. SIMULATION AND RESULTS

In our simulation, we assume a uniform linear array with

omnidirectional sensors and half-wavelength inter-element

spacing. We conducted two experiments to show the per-

formance of our proposed method with different values of

SNR. In experiment one, we generate the GARCH(1,1) noise

model but in the former we use underwater ambient noise[7,
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Figure 1: RMSEs (dB) vs. SNR(dB) for Bartlet, MUSIC,

and proposed method with two targets [−5 ◦, 10 ◦] in (a)

GARCH(1,1) , (b) underwater ambient noise

10]. In all our experimental results, conventional Bartlet and

MUSIC DOA estimation approaches [7] have been compared

with the proposed method. First we assume two equally

powered sources with DOA = [−5 ◦, 10 ◦] relative to broad-

side. Figure 1, (a) and (b) show root-mean-square-errors

(RMSEs) versus SNR for experiment 1 and 2. In the follow-

ing we assume two equally powered sources with DOA =
[5 ◦, 10 ◦] at SNR=0 dB and simulate the above mentioned

experiments. Normalized spectra versus DOA can be seen

in Figure 2, (a) , (b) for the two experiments. We see the

proposed method has resolved the targets better than two

other methods, and the RMSEs of the proposed method are

less than the others.

7. CONCLUSIONS

In this paper we propose a new method for noise model-

ing in array signal processing . We utilized GARCH noise

modeling in the ML approach to estimate DOAs of sources.

This model accounts for heavy tails PDFs with excess kur-
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Figure 2: Normalized Spectra(dB) vs. DOA(degree) for Bart-

let, MUSIC, Proposed methods, two targets [5 ◦, 10 ◦] in (a)

GARCH(1,1) , (b) underwater ambient noise

tosis and volatility clustering a type of heteroscedasticity .

We simulated this approach for two different experiments

(GARCH and underwater ambient noise) to show the perfor-

mance of our proposed method. The results of these simu-

lations verify that the proposed method is suitable for high-

resolution source separation and noise suppression in a the

realistic non-Gaussian environment.
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