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ABSTRACT

An enhanced technique for estimating the range and direction-
of-arrival (DOA) of narrow-band near-field sources is pre-
sented. This technique utilizes fourth-order cumulants of
the received signal across an array of two orthogonally po-
larized sensors. It is shown that the incorporation of the
source polarization in an ESPRIT-based angle and range
estimation technique provides improved performance over
the case where the polarization information is absent in the
problem formulation.

1. INTRODUCTION

Most of the research in array processing has been focused
on far-field signals and is based on the assumptions that the
source signals are located relatively far from the receiver.
However, the far-field assumption of plane wavefronts no
longer holds and the typical steering vector characterized
by the source DOA is not applicable. The consideration of
the curvature of the propagating signal waves allows for the
ability of range estimation [1].

Polarization diversity has been proven useful in wireless
communications and various types of radar systems. Po-
larization has also been incorporated in array antennas for
improved estimation of far-field signal parameters, includ-
ing direction finding [2, 3, 4, 5].

In this paper, a novel signal model for near-field sources
is presented incorporating the source polarization informa-
tion. Using this model a polarimetric fourth-order statistics-
based ESPRIT-like algorithm is developed for closed-form
DOA and range estimation. It is shown that the use of
polarimetric information can significantly improve the esti-
mation accuracy of the source parameters.

2. SIGNAL MODEL

2.1. Geometry

Consider a linear equi-spaced array of 2Nx dual-polarization
sensors placed on a flat plane in a two-dimensional surface.
Assume that the sensor position errors are negligible and
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the gain and phase of all sensors and corresponding data
acquisition equipment are accurately matched. We con-
sider a narrow-band array, i.e., the reciprocal of the band-
width of any signals received is large compared with the
propagation delay across the array. The wavelength of all
sources received is λ. Let d be the interelement spacing of
the sensors, which are located along the x-axis and indexed
−Nx + 1,−Nx + 2, . . . , 0, 1, . . . , Nx from left to right. We
assume that d ≤ λ/4. The array configuration is shown in
Fig. 1.

Figure 1: Array geometry.

2.2. Signal model

For a transverse electromagnetic (TEM) wave propagating
to the array, the electric field can be described as

�E = Eφφ̂ + Eθ θ̂, (1)

where φ̂ and θ̂ are the spherical unit vectors along the az-
imuth and elevation angles φ and θ, respectively. For sim-
plicity, it is assumed that the source signal is in the y-z
plane perpendicular to that of the array which is located in
the x-y plane. Then, φ = 90, φ̂ = −x̂, and

�E = −Eφx̂ + Eθ θ̂ = −Eφx̂ + Eθ cos(θ)ŷ + Eθ cos(θ)ẑ, (2)

with ŷ and ẑ representing the unit vectors along the y and z
directions, respectively. A polarized signal can be described
as

Eφ = E cos(γ), Eθ = E sin(γ)ejη. (3)
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where γ and η denote the magnitude ratio and the phase
between the two polarization components. Therefore, Eq.
(2) can be written as

�E = E(− cos(γ)x̂ + cos(θ) sin(γ)ejη ŷ + cos(θ)ẑ) (4)

The signal component in the ẑ direction is eliminated using
the specific orientation of the cross-polarized array of Fig.
1. It is noted that, in the near-field environment, θ in the
above equation varies at each of the 2Nx sensors. It is
straightforward to show that the DOA of the lth source
signal at sensor m is described by

θml = sin−1

(
rl sin(θl) − md√

r2
l + m2d2 − 2rlmd sin(θl)

)
. (5)

The pair of variables (θl, rl) denotes the DOA and range of
source l at the reference sensor, m = 0. These variables are
unknown and need to be estimated.

The received signal at sensor m for polarizations x and
y can be approximated as [1]

u[x]
m (t) = −

Ns∑
l=1

sl(t) cos(γl)e
j(ωlm+φlm

2) + n[x]
m (t), (6)

u[y]
m (t) =

Ns∑
l=1

sl(t) cos(θml) sin(γl)e
jηlej(ωlm+φlm

2) + n[y]
m (t),

(7)

respectively, where n
[i]
m(t), i = x, y is the noise component

for polarization i at the mth sensor and sl(t) is the lth
source signal. The parameters ωl and φl are functions of
the DOA θl, the range rl, and the wavelength λ of source
l, and are defined as

ωl = −2π
d

λ
sin(θl), φl = π

d2

λrl
cos2(θl). (8)

In vector format, Eqs. (6) and (7) can be written as

u[i](t) = B[i]s[i](t) + n[i](t), i = x, y (9)

with

u[i](t) = [u
[i]
−Nx+1(t), u

[i]
−Nx+2(t), . . . , u

[i]
Nx

(t)]T

s[x](t) = −[s1(t) cos(γ1), . . . , sNs(t) cos(γNs)]T

s[y](t) = [s1(t) sin(γ1)e
jη1 , . . . , sNs(t) sin(γNs)ejηNs ]T

n[i](t) = [n
[i]
−Nx+1(t), n

[i]
−Nx+2(t), . . . , n

[i]
Nx

(t)]T . (10)

The columns of the polarization-dependent 2Nx ×Ns steer-
ing matrices B[x] and B[y] are

b
[x]
l = [ej(−Nx+1)ωl+j(−Nx+1)2φl , . . . , 1,

ej(ωl+φl), . . . , ej(Nxωl+N2
xφl)]T (11)

b
[y]
l = [ej(−Nx+1)ωl+j(−Nx+1)2φl cos(θ(−Nx+1)l),

. . . , cos(θ0l), e
j(ωl+φl) cos(θ1l), . . . ,

ej(Nxωl+N2
xφl) cos(θNxl)]

T , (12)

where the superscript T denotes transpose. Note that in

the above formulation, the source polarization appears, in
part, in both B[q] and s[i](t).

We make the following assumptions:

[A1] The source signals s
[i]
l (t), l = 1, 2, . . . , Ns, are inde-

pendent, non-Gaussian, narrow-band, and stationary pro-
cesses.

[A2] The noise components, n
[i]
m(t), m = −Nx + 1,−Nx

+2, . . . , Nx, are independent and zero-mean Gaussian pro-
cesses, and are independent of the source signals.

[A3] The range of the sources are not equal, i.e., ri �= rj

for i �= j.
[A4] The array is uniform and linear with 2Nx sensors.

The interelement spacing of the array is d ≤ λ
4
. Addition-

ally, the number of sources is less than half the number of
sensors, i.e., Ns < Nx.

3. ESTIMATION ALGORITHM

The (m, n)th element of the polarized fourth-order cumu-
lant matrix C1

[ij] is defined as

C
[ij]
1 (m, n) = cum{(u[i]

m(t))∗, u[i]
m+1(t), (u

[j]
n+1(t))

∗, u[j]
n (t)}

(13)
where i, j = x, y and 0 ≤ m, n ≤ Nx − 1. Using the multi-
linearity property of cumulants and the assumptions A1 –

A4, we can write C1
[xx] = [C

[xx]
1 (m, n)] as

C1
[xx] = AC

[xx]
4s AH . (14)

where A is an Nx ×Ns matrix with its lth column given by

al = [1, ej2φl , . . . , ej2(Nx−1)φl ]T , (15)

and the matrix C
[ij]
4s of size Ns × Ns is diagonal and its

kth diagonal element is the cross- or auto-polarized sig-
nal kurtosis of the kth signal. For different polarizations,

C
[xx]
4s = PC4sP, C

[xy]
4s = PC4sQ, C

[yx]
4s = QC4sP and

C
[yy]
4s = QC4sQ, where

P = diag[cos2(γ1), . . . , cos2(γNs)] (16)

Q = diag[sin2(γ1), . . . , sin2(γNs)] (17)

C4s = diag[c4s1 , c4s2 , . . . , c4sNx
] (18)

c4sl = cum{s∗l (t), sl(t), s
∗
l (t), sl(t)}. (19)

Table 1 describes the matrix product formulation sim-
ilar to (14) for xy, yx and yy. Ā is the steering matrix of
size Nx ×Ns associated with the y polarization. Assuming
that the cos(θml) term in (7) is constant across all sensors,
i.e. cos(θml) = cos(θ0l), then one can define the columns of
matrix Ā as

āl = cos2(θ0l)[1, ej2φl , . . . , ej2(Nx−1)φl ]T . (20)

It is noteworthy that relaxing the above assumption does
not impede the performance of the proposed polarimetric
approach.

Table 1: Cross-polarized cumulant matrices

C1
[ij] Cumulant matrix

C1
[xx] AC

[xx]
4s AH

C1
[xy] AC

[xy]
4s ĀH

C1
[yx] ĀC

[yx]
4s AH

C1
[yy] ĀC

[yy]
4s ĀH
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Using different sensor lags, one can define other fourth-
order polarized cumulant matrices,

C2
[ij](m, n) = cum{(u[i]

m−1(t))
∗, u[i]

m(t), (u
[j]
−n(t))∗, u[j]

1−n(t)}
(21)

C3
[ij](m, n) = cum{(u[i]

m(t))∗, u[i]
m+1(t), (u

[j]
−n(t))∗, u[j]

1−n(t)}
(22)

C4
[ij](m, n) = cum{(u[i]

m−1(t))
∗, u[i]

m(t), (u
[j]
n+1(t))

∗, u[j]
n (t)}.

(23)
From Table 2 and the four respective polarized cumulant
matrices of Table 1, other cumulant matrices can be de-

scribed as a function of A, Ā,C
[ij]
4s , Φ and Ω. The latter

two diagonal matrices are defined in terms of the variables
ωl and φl, l = 1, 2, . . . , Ns, introduced in (8), where

Ω = diag[e−j2ω1 , e−j2ω2 , . . . , e−j2ωNs ] (24)

Φ = diag[ej2φ1 , ej2φ2 , . . . , ej2φNs ]. (25)

Table 2: Cross-polarized cumulant matrices
Matrix Equivalent

C1
[xx] AC

[xx]
4s AH

C2
[xx] AC

[xx]
4s ΩHAH

C3
[xx] AΦHC

[xx]
4s ΩHAH

C4
[xx] AC

[xx]
4s ΦHAH

Let C denote the dual-polarized matrix

C =

[
C[xx] C[xy]

C[yx] C[yy]

]
. (26)

For i, j = x, y, each sub-matrix in (26) can be defined as [7]

C[ij] =

⎡
⎣ C1

[ij] C2
[ij] C4

[ij]

(C2
[ij])H C1

[ij] (C3
[ij])H

(C4
[ij])H C3

[ij] C1
[ij]

⎤
⎦ . (27)

Matrix C can be conveniently written in a form reminiscent
to that used in array processing signal models

C � ÂC4sÂ
H , (28)

where matrix Â is of size 6Nx × 2Ns and given by

Â =

⎡
⎢⎢⎢⎢⎢⎣

AP
APΩ
APΦ
ĀQ
ĀQΩ
ĀQΦ

⎤
⎥⎥⎥⎥⎥⎦ . (29)

From (29), it is evident that the polarization diversity dou-
bles the space dimension of the conventional problem for-
mulation.

Performing an eigendecomposition on C and selecting
the eigenvectors corresponding to the largest Ns eigenval-
ues, we define the signal subspace matrix, Es = [e1, e2, . . . ,
eNs ], which can be partitioned as

Es = [(E
[x]
1 )T , (E

[x]
2 )T , (E

[x]
3 )T , (E

[y]
1 )T , (E

[y]
2 )T , (E

[y]
3 )T ]T .

(30)

Define

E1 =

[
E

[x]
1

E
[y]
1

]
, E2 =

[
E

[x]
2

E
[y]
2

]
and E3 =

[
E

[x]
3

E
[y]
3

]
. (31)

From the definition of Â in (29) and using an ESPRIT-
like rotational invariance, the subspace spanned by the col-
umns of both E2 and E3 are rotated versions of that spanned
by the columns of E1. Therefore, one can define the follow-
ing two key equations

E2 = E1Ψ and E3 = E1Υ, (32)

where the eigenvalues of the matrices Ψ and Υ are the
diagonal elements of Ω and Φ. In the least-squares sense
[6], Ψ and Υ can be estimated as

Ψ = E†
1E2 and Υ = E†

1E3 (33)

where † represents the pseudo-inverse. An eigendecompo-
sition of the least-squares solution presented in (33) yields
closed-form estimates of ωl and φl in (8), and subsequently
estimates of θl and rl.

4. SIMULATIONS

To demonstrate the advantages of using dual-polarization
array in the underlying range and DOA estimation prob-
lem, two sets of simulations are performed; one pertains to
the DOA estimation whereas the other considers the range
estimation. The receiver array consists of 14 crossed-dipoles
(i.e., horizontally and vertically polarized dipoles) with an
interelement spacing of d = λ/4. Two sources with pa-
rameters shown in Table 3 impinge on the array and are
modelled as ejψt , where the phases ψt, t = 1, 2, . . . , N , are
uniformly distributed in the interval [0, 2π]. N = 1000 sam-
ples of the source signals are used. The root mean-square
error (RMSE) is plotted versus the input signal-to-noise ra-
tio (SNR) at each of the sensors.

The proposed polarimetric method was compared to the
conventional ESPRIT-like method, which does not incorpo-
rate the signal polarizations. In the conventional method,
there was no decoupling of the polarization variables and
the signal received at both polarizations was combined.

Figures 2 and 3 show the RMSE of the range estimates
of 100 independent trials at each SNR point for the con-
ventional and the polarimetric methods, respectively. It is
evident that the polarimetric method outperforms the con-
ventional method. Furthermore, improved estimates are
provided as the source moves closer to the receiver, which
is consistent with the behavior of cumulant-based estima-
tion [7].

Figures 4 and 5 show the RMSE of the DOA estimates of
100 independent trials at each SNR point for both methods.
Similar to the findings in [7], the angle estimation is not
affected by the source range. It is evident from both figures
that the polarimetric method is superior to the conventional
method.
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Table 3: Signal parameters
DOA range γ φ
(deg.) (in λ) (deg.) (deg.)

source 1 20 0.5 10 0
source 2 30 5.0 80 0
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Figure 2: RMSE range of source 1.
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Figure 3: RMSE range of source 2.
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Figure 4: RMSE DOA of source 1.
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Figure 5: RMSE DOA of source 2.

5. CONCLUSION

A technique for DOA and range estimation using cross-
polarized multi-antenna array was presented. This tech-
nique is based on an ESPRIT-like algorithm and incorpo-
rates fourth-order cumulants for improved source parameter
estimation of polarized near-field signals. It is evident from
the root mean-square error simulations of the source DOA
and range parameters that the proposed technique outper-
forms its non-polarimetric counterpart.
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