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ABSTRACT

This paper presents a novel approach to estimate the
directions of arrival recursively as measurements of in-
cident signals are received along a sensor array. Using
a single snapshot and without any statistical assump-
tions, the proposed method employs a robust perfor-
mance criterion based on worst-case gain minimization.
The performance of the new approach is evaluated by
simulating the estimation algorithm for a linear array
and comparing its performance to that of an existing
single-snapshot algorithm.

1. INTRODUCTION

In the Direction-Of-Arrival (DOA) estimation problem,
the directions of multiple incident signals on a sensor
array are determined from measured data. This prob-
lem is of great importance in the fields of radar, sonar,
and wireless communications. A practical direction-
finding algorithm must provide a real-time solution that
is computationally efficient and uses only a few array
snapshots.

Most of the techniques that are suitable for real-
time implementation have aimed at reducing the com-
putational load of subspace decomposition per update
but not the number of array snapshots necessary to at-
tain a certain level of performance [1, 2]. At present,
only a couple of single-snapshot algorithms have been
reported in the literature using Bayesian and MuSiC-
based approaches [3, 4]. At the same time, a practical
DOA estimation method ought to be robust against im-
perfections in the array model that manifest themselves
as amplitude and phase perturbations. Such unmod-
eled effects degrade the performance of subspace fitting
algorithms [5].

This paper addresses the robustness issue by con-
trolling, within a specified or minimum tolerance, the
quotient of the cumulative estimation error by the sum
of the cumulative perturbation and noise. On the premise
of the worst possible perturbation that maximizes the
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quotient, a deterministic estimation approach arises,
known as H∞ filtering. The design of linear H∞ filters
has attracted significant attention in the literature [6].
In the nonlinear case, using a first-order approximation
of the model at hand, an extended H∞ filter exists lo-
cally and has a feasible design procedure [7, 8]. In the
array signal processing field, one finds the linear H∞
filter used in order to enhance the performance of the
MuSiC algorithm against the effects of finite sampling
and modeling error [9]. Beamforming is another area
where linear H∞ filtering has been employed to pro-
vide robustness when small samples or imperfect array
models are used [10, 11].

Moreover, this paper proposes an extended H∞ fil-
ter for DOA estimation that leads naturally to a single
snapshot and computationally efficient algorithm. The
H∞ approach is deterministic and, therefore, it neither
requires statistical knowledge of the modeling error nor
makes any assumptions (e.g., zero-mean Gaussian) on
the additive noise.

The model for the sensor array and a state-space
realization of it are derived in Section 2. Section 3
formulates the parameter estimation as an extended
H∞ filter design problem and presents the result on
the convergence of the parameter estimates. Simula-
tion results for a linear sensor array are summarized in
Section 4.

2. SENSOR ARRAY RESPONSE

The DOA of a plane wave sinusoidal signal is com-
puted using a single snapshot of measurements from
a uniformly-spaced, linear array (ULA). Note that the
DOA ψi is measured from the broadside axis. The
number of signals or sources is denoted by p and the
number of sensors is denoted by J where J ≥ p.

Given the sources si(t) = ejω t, i = 1, . . . , p, the
measurement yl(t) at each sensor l takes the form

p∑
i=1

si(t − τ (ψi) l) =
p∑

i=1

e−jφ(ψi) l si(t) (2.1)

where τ (ψi) is the delay and φ(ψi) := ω τ (ψi) is the
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phase lag. In the sequel, t = 0 is assumed because a
single snapshot is used and the measurement at each
sensor l is given by

y(l) =
p∑

i=1

e−jφ(ψi) l (2.2)

If d is the distance between sensors and c is the proroga-
tion speed, the delay τ (ψi) := d

c sin(ψi) is the elapsed
time between when the signal is received at adjacent
sensors.

The recursive solution of the H∞ filtering problem
requires the model to be in state-space form. The sen-
sor array response in (2.2) can be written as a diagonal
state equation

xi(l + 1) = e−j φ(ψi) xi(l), i = 1, . . . , p (2.3)

Using (2.2), the output equation takes the form

y(l) = [ 1 · · · 1 ] x(l) + w(l) (2.4)

where w(l) incorporates the modeling uncertainty and
the measurement noise.

The DOA parameters can be extracted from the
above realization using the expression

ψi = sin−1

(
c φ(ψi)

ω d

)
(2.5)

after φ(ψi) is determined from each diagonal element
of the state equation (2.3).

3. EXTENDED H∞ FILTERING AND
PARAMETER CONVERGENCE

The state-space realization of the array model, namely,
equations (2.3) and (2.4), belong to the following class
of stable state equations:

x(l + 1) = A(θ) x(l), x(0) = x0, A ∈ Cp×p

y(l) = C(θ) x(l) + w(l), C ∈ C1×p (3.6)

where w is some disturbance and C denotes the com-
plex field. The vector θ comprises all of the model
parameters that are unknown (e.g., θi = e−j

d ω sin(ψi)
c ).

The objective is to identify the parameter vector, θ,
using the measured data y where the initial state x0 is
unknown.

The parameter estimation problem is transformed
into a state estimation problem by defining an aug-
mented system with the state zT (l) = [xT (l) θT (l)].
Since θ is independent of the sensor location, the evolu-
tion of θ along the array is described by θ(l+1) = θ(l).

As a result, the augmented system has a state equation

z(l + 1) = f(z(l))
y(l) = h(z(l)) + w(l)
θ(l) = L z(l) (3.7)

where

f(z(l)) :=
[

A(θ) x(l)
θ(l)

]

h(z(l)) := C(θ) x(l)
L :=

[
0p Ip

]
To estimate Lz, the following filter is proposed:

ẑ(l + 1) = f(ẑ(l)) + N (l)[y(l) − h(ẑ(l))]

θ̂(l) = Lẑ(l) (3.8)

where N (l) ∈ C2p×1 is the filter’s gain. In the H∞
filtering problem, the filter’s gain, N (l), determines the
L2 gain from the sum of the disturbance w(l) and the
initial state estimation error ez(0) := ẑ(0) − z(0) to
the estimation error eθ(l) := θ̂(l) − θ. This approach
protects against the worst-case disturbance and ensures
that the L2 norm of the estimation error will be small if
the disturbance and initial state estimation error norms
are small. Given a tolerance γ, the suboptimal H∞
problem is to find N (l) so that the L2 gain is bounded
as follows:

sup
w, ez(0)

‖eθ‖2
2,[0,J ]

‖w‖2
2,[0,J ] + e∗z(0) Rez(0)

< γ2 (3.9)

where the positive-definite matrix R ∈ C2 p×2p is speci-
fied by the designer and the supremum is taken over all
combinations w and ez(0) such that the denominator
is not identically zero. In the sequel, the gain N (l) is
computed from the solution of (3.9) for the linearized
system, which makes (3.8) an extended H∞ filter. The
idea of using the extended filter to estimate the para-
meters of a model has its origin in the theory of the
Kalman filter [12].

The linear approximation of the augmented sys-
tem (3.7) has the form

z(l + 1) = F (l) z(l)
y(l) = H(l) z(l) + w(l)
θ(l) = L z(l) (3.10)

where F and H the Jacobian matrices of the nonlinear
mappings f and h, respectively. Using the realization
of the linearized system (3.10), the extended H∞ filter’s
gain is given by

N (l) = F (l) Q̄(l) H∗(l)[H(l) Q̄(l) H∗(l) + 1]−1 (3.11)

II - 94

➡ ➡



where Q̄(l) ∈ C2p×2 p is related to the solution of the
Riccati equation

Q(l + 1) = F (l) Q̄(l) F ∗(l)
−N (l) [H(l) Q̄(l) H∗(l) + 1] N∗(l)

Q̄(l) = (Q−1(l) − γ−2 L∗ L)−1

Q(0) = R−1 (3.12)

In the case that a projection feature is employed
to keep the estimate, θ̂(l), inside a compact subset
of {θ|A(θ) is stable}, the parameter update algorithm
converges as stated below.

Proposition 1 Let the state-space equation (3.6) model
the response of a ULA of J sensors to p incident sig-
nals. Suppose the extended H∞ filter estimates the
p-dimensional parameter vector, θ, which is equivalent
to estimating the DOA of the p incident signals. Then,
as the number of sensors, J , increases the estimate θ̂(J)
converges to a local minimum of the function

V (θ) = lim
J→∞

1
J

J∑
l=1

|ε̄(l, θ)|2

where

¯̂x(l + 1, θ) = A(θ) ¯̂x(l, θ)
ε̄(l, θ) = y(l) − C(θ) ¯̂x(l, θ)

Note that the cost function, V , is independent of the
filter gain, N , a property that has its origin in the ab-
sence of a constant term from the right-hand-side of the
Riccati equation (3.12). The cost function, V , has been
known to have this property also with respect to the
extended Kalman filter, where a similar Riccati equa-
tion arises [13]. Therefore, both the extended Kalman
and H∞ filters converge to the set of the local minima
of V .

4. SIMULATION RESULTS AND CONCLUSION

In this section, the H∞ filter with a spatially-varying
tolerance is applied to the DOA estimation problem
for a ULA with half-wavelength spacing. The perfor-
mance of the H∞ filter is investigated for a number of
cases to demonstrate its nominal performance and its
robustness. The design parameters for the H∞ filter
are selected based on the analysis in [14].

For a single source (p = 1), the performance of the
H∞ filter is examined from ideal and noisy measure-
ments. Furthermore, the robustness is investigated by

considering gain and phase perturbations in the ar-
ray model. The results are compared with an exist-
ing Bayesian single-snapshot algorithm [3] and demon-
strate the superior performance of the H∞ algorithm
over standard, direction-finding methods. Specifically,
the H∞ algorithm delivers superior performance for
noisy measurements with signal-to-noise ratio (SNR)
less than 6dB and measurements generated by array
models with gain, phase perturbations, or both. The
two algorithms perform similarly for SNR ≥ 6dB. For
two sources (p = 2), the H∞ filter’s ability to separate
targets is examined for ideal and noisy measurements.

4.1. Single Source: Measurement Noise

SNR = 1.25 dB
Algorithm Mean (deg) RMS Error (deg)
H∞ 40.1 1.42
Bayesian 64.5 45.7
MuSiC 40.0 N/A

Table 1: Estimation results with zero-mean,
normally-distributed additive noise

To examine the performance of the H∞ filter in a re-
alistic situation, normally-distributed, zero-mean noise
is added to the ideal measurements from 25 sensors.
The mean estimate and the RMS error of the H∞ and
Bayesian algorithms are compared over 100 trials for
several cases of the SNR and a true DOA of 40o. For
a SNR of 6dB, the H∞ and Bayesian algorithms esti-
mate the DOA accurately with small RMS error. For
smaller SNR, the H∞ algorithm performs significantly
better than the Bayesian algorithm. The mean and
RMS error values for the two algorithms are shown in
Table 1 for SNR values of 1.25dB. Furthermore, the
results of the H∞ algorithm compare favorably to the
estimate of the MuSiC algorithm using 100 snapshots.
The results for a SNR of 0dB are similar.

4.2. Single Source: Perturbations

H∞ Bayesian
Case Mean RMS Error Mean RMS Error
1 40.0 0.377 50.2 31.8
2 40.1 1.63 48.9 26.1
3 40.3 1.46 52.4 36.8
4 40.3 0.717 52.5 35.8

Table 2: Estimation results with gain and phase
perturbations

To examine the robust performance of the H∞ fil-
ter, the measurements are created using a perturbed
array model and normally-distributed, zero-mean noise
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with 6dB SNR is added. As a result, the ideal array
model used in the algorithm does not match the ar-
ray model that generated the data. The latter is the
perturbed model with gain perturbation and phase per-
turbation. As above, the mean estimate and the RMS
error of the H∞ and Bayesian algorithms are compared
over 100 trials for a true DOA of 40o. The four cases of
gain and phase perturbation are (1) gain perturbation
only, (2) phase perturbation only, (3) gain and phase
perturbation simultaneously, and (4) 25 % sensor fail-
ure. The results of these four cases are summarized
in Table 2 and demonstrate the superior robustness of
H∞ algorithm as compared to the Bayesian algorithm.
Comparing the results in Table 1 (without uncertainty)
and in Table 2 (with uncertainty), the performance of
H∞ algorithm remains nearly the same while the ar-
ray uncertainty caused substantial degradation in the
performance of the Bayesian algorithm.

4.3. Two sources

The aspects of the performance of the H∞ filter specific
to the dual-source (p = 2) case are examined from ideal
and noisy measurements. Without measurement noise
or model uncertainty, simulations results show that two
sources can be identified using measurements from a
reference sensor and two additional sensors. Further-
more, the H∞ filter can estimate the directions of ar-
rival for two targets whose directions are separated by
a few degrees if the initial DOA estimates are suffi-
ciently close to the true DOA values. When measure-
ment noise and model uncertainty are absent, targets
separated by 10o can be distinguished if the DOA initial
estimates are centered about the true directions and are
separated by at most 40o. For targets separated by 5o,
the DOA initial estimates can by separated by at most
15o. For a SNR of 0dB, the H∞ algorithm can main-
tain 5o separation but the initial DOA estimates can
by separated by at most 10o.
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