
ON 3-D HARMONIC RETRIEVAL FOR WIRELESS CHANNEL SOUNDING

Kleanthis N. Mokios
�
, Nicholas D. Sidiropoulos

�
, Marius Pesavento

�
, C. F. Mecklenbräuker �
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ABSTRACT

Multidimensional harmonic retrieval (HR) problems often appear
in the context of MIMO wireless channel sounding. In particu-
lar, for a double-directional parametric MIMO channel model with
uniform linear transmit and receive arrays, and a fixed wireless
scenario (static - no Doppler), fitting the channel model parameters
amounts to a 3-D harmonic retrieval problem. For this latter prob-
lem, we develop two new algorithms. One is based on conjugate-
folding of the 3-D data and reduction to an eigenvalue decomposi-
tion problem; the other on a 3-D version of the Rank Reduction Es-
timator (RARE) applied to a subspace extracted from a single data
snapshot, using 3-D conjugate-folding. Both algorithms remain
operative close to the best known model identifiability boundary.
The two algorithms are compared via pertinent simulations.

1. INTRODUCTION

Channel sounding campaigns are often undertaken by wireless de-
velopers and operators to characterize and model the MIMO wire-
less channel in a parsimonious way. In these campaigns, training
data is emitted from the various transmit elements, and the asso-
ciated data recorded from all receive elements is stored for subse-
quent channel estimation. Depending on the scenario, the associ-
ated channel parameter estimation problem often boils down to a
multidimensional harmonic retrieval problem [1, 6, 4]. In partic-
ular, for the so-called double-directional MIMO wireless channel
model, each path is modeled via five parameters: its direction-of-
departure (DOD), direction-of-arrival (DOA), propagation delay,
Doppler shift, and complex path loss. For uniform linear trans-
mit and receive arrays and a fixed wireless scenario (zero Doppler
shift), and after suitable preprocessing, the noiseless part of the
baseband-equivalent data for a single MIMO snapshot can be mod-
eled as [6, 4]

� 	 � � � 
 � ��
� � � � � � 	 � �� � � � �� � 
 � ��  (1)

for ! � #  % % %  ( , ) � #  % % %  * and + � #  % % %  . , where( is the number of acquired data samples per channel, * is the
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number of receive antenna elements, . is the number of trans-

mit antenna elements, � � 1 � 3 � 5 7 9: < = , � � 1 � 3 � 5 7 9 @ AB D E F HI = ,� � 1 � 3 � 5 7 9 @ LB D E F HM = , and N � , OP � , OQ � are the delay, direction of
arrival, and direction of departure, respectively, of the R -th path, S
is the carrier wavelength, and � T , � U are the inter-element spac-
ings of the transmit and receive array, respectively. We see that
extracting the parameters of interest is a 3-D harmonic retrieval
problem: Given a mixture of V 3-D exponentials as in (1), find the
parameter quadruples W � �  � �  � �  � � Z , for R � #  % % %  V . For ease
of notation, we define � � 1 � 3 5 ^ = , � � 1 � 3 5 I = and � � 1 � 3 5 M = ,
and (1) yields

� 	 � � � 
 � ��
� � � � � 3 5 ^ = a 	 � � b 3 5 I = a � � � b 3 5 M = a 
 � � b  (2)

where c � ,
P � ,

Q � e g , and g 1 � W i k  k l . Define m e o q s t s v
with m W !  )  + Z � � 	 � � � 
 , y e o q s � with y W !  R Z � 3 5 ^ = a 	 � � b

,z e o t s � with
z W )  R Z � 3 5 I = a � � � b

, | e o v s � with | W +  R Z �3 5 M = a 
 � � b
, and a diagonal matrix ~ e o � s � with ~ W R  R Z �

� � .
The following result will be used in our derivation.

Theorem 1 (a.s. full rank of Khatri-Rao product of Vandermonde
matrices [2]) For a triple of Vandermonde matrices y e o q s � ,z e o t s � and | e o v s � , with generators on the unit circle,� � � � � � � � � � W ( * .  V Z  � � W � � � Z i � % � %  (3)

where � is the unit circle, and � � W � � � Z is the distribution used to
draw the � V generators for y ,

z
and | assumed continuous with

respect to the Lebesgue measure in � � � .

2. ALGORITHMS

Consider a sum of V 3-D undamped exponentials as in (2), with! � #  % % %  ( � � , ) � #  % % %  * � � , and + � #  % % %  . � � ,
and assume V � � ( � � � * � � � . � � % (4)

Define a 6-way array ¢m with typical element

¢� 	 £ � 	 7 � � £ � � 7 � 
 £ � 
 7 1 � � 	 £ � 	 7 � � � � £ � � 7 � � � 
 £ � 
 7 � �
� ��

� � � � � 3 5 ^ = a 	 £ � � b 3 5 ^ = a 	 7 � � b
3 5 I = a � £ � � b 3 5 I = a � 7 � � b 3 5 M = a 
 £ � � b 3 5 M = a 
 7 � � b  (5)
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where � � � � � � � � � 	 � 
 �
, � � � � � � � � � � � 
 �

, � � � � � � � � � � � 
�
for

� � � � �
, with 	 � � 	 � � 	 � � , � � � � � � � � � ,� � � � � � � � � . Since � � � � 	 � � � � � 
 � has been as-

sumed, such extension to a 	 -way array is always feasible. For� � � � �
, define matrices

� � � � � � � � � � � �  ! " $ % � ' � ) � * , - � . / �0 � � � � � � � � � � �  1 " $ 3 � ' � ) � * , 4 � . / �
5 � � � � � � � � � � �  7 " $ 8 � ' � ) � * , : � . / �

Then nest the six-way array ;< into a matrix

< * , - = 4 = : = . - ? 4 ? : ?

as follows
@ � A � � ;@ � �� = � = � A � �� ? � ? � A � �� = � ' $ � �� = � = � ' � ) 4 = A� �� ? � ' $ � �� ? � ? � ' � ) 4 ? A � ' $ � �� = � ' � ) : = A � ' $ � �� ? � ' � ) : ?
� /B

C E � G C � � A C � � A C � (6)

where� � A C � � �  ! " $ � �� = � = � ' � ) �  1 " $ � �� = � ' $ � �� = � = � ' � ) 4 = ' � )
�  7 " $ � ' $ � �� = � ' � ) : = ' � ) �� � A C � � �  ! " $ � �� ? � ? � ' � ) �  1 " $ � �� ? � ' $ � �� ? � ? � ' � ) 4 ? ' � )
�  7 " $ � ' $ � �� ? � ' � ) : ? ' � ) �

for ! � � � � � � � 	 � � � � � , and " � � � � � � � 	 � � � � � . Define# � � � � � A C � * , - = 4 = : = . / � $ � � � � � A C � * , - ? 4 ? : ? . / �
It can be verified that# � � � & 0 � & 5 � � $ � � � & 0 � & 5 � � (7)

Hence (6) can be written in compact matrix form as
< � # K $ L � (8)

Next, taking the conjugate of @ % A 3 A 8 in (2), we obtain

@ N% A 3 A 8 � /B
C E �



G C �  ! " $ - ' % ) �  1 " $ 4 ' 3 ) �  7 " $ : ' 8 ) �

where



G C � � G NC � '  ! " $ - ' � ) '  1 " $ 4 ' � ) '  7 " $ : ' � )
. Define) % A 3 A 8 � � @ N- ' % Q � A 4 ' 3 Q � A : ' 8 Q �

� /B
C E �



G C �  ! " $ % ' � ) �  1 " $ 3 ' � ) �  7 " $ 8 ' � ) � (9)

for � � � � � � � � 	 , � � � � � � � � � , � � � � � � � � � and correspond-
ingly the three-way array * � � � ) % A 3 A 8 � * , - . 4 . : . Following
the same procedure as in the construction of


< from < , we can
construct a matrix


* * , - = 4 = : = . - ? 4 ? : ?
from * , such that
) � A � � /B

C E �



G C � � A C � � A C � � � , � � 
* � # 
K $ L � (10)

where

K � . � / 0 � 


G � � � � � � 

G / � .

2.1. 3-D Multi-Dimensional (conjugate) Folding (3-D MDF)

Invoking Theorem 1, if 	 � � � � � 
 V and 	 � � � � � 
 V , then
both

#
and $ in (7) are almost surely full column rank. Hence


<
and


* are full column rank, and the singular value decomposition
of the stacked data yields1 
< 
* 3 � 1 # K# 
K 3 $ L � 4 � - = 4 = : = . / 6 / . / 8 :- ? 4 ? : ? . / �

(11)
where 4 has V columns which together span the column space of; 
< L 
* L = L . Since the same space is spanned by the columns of; � # K � L � # 
K � L = L , there exists an V ? V nonsingular matrix @
such that 4 � 1 4 �4 � 3 � 1 # K# 
K 3 @ � (12)

It then follows that 4 B � 4 � � @ ' � K ' � 
K @ � (13)

which is an eigenvalue decomposition problem. @ ' �
contains the

eigenvectors of 4 B � 4 � (scaled to unit norm). Other parameters are
given by # K � 4 � @ ' � � $ � ; � # K � B 
< = L � (14)

The first row of the product
# K is the diagonal of K , i.e.,D G � � � � � � G / Y with its entries multiplied by a complex constant, i.e.,D � � E Z � � G � � � � � � � � E Z / � G / Y . � [ C � \ C � ] C � can be recovered from#

and/or $ , e.g., the second, � � � � � � -th and � � � � � � � � -th
rows of $ are

D Z � �  7 = � � � � � Z / �  7 G Y , D Z � �  1 = � � � � � Z / �  1 G Y , andD Z � �  ! = � � � � � Z / �  ! G Y , respectively. All entries of a given column
of $ are multiplied by the same scaling constant. A simple way to
determine �  7 " , for example, is to evaluate the ratio of the �

� � � � -
th entry of $ over the � � � � � -th entry of $ . �  1 " and �  ! " can
be determined in a similar fashion. No pairing issue exists, i.e.,� [ C � \ C � ] C � G C � are paired up automatically. Hence the parameter
quadruples � [ C � \ C � ] C � G C � , � � � � � � � � V can be uniquely recov-
ered almost surely, provided there exist integers 	 � , 	 � , � � , � � ,� � , � � such that

	 � � � � � 
 V � 	 � � � � � 
 V � (15)

subject to

	 � � 	 � � 	 � � � � � � � � � � � � � � � � � � � � � � �
(16)

If the integers are chosen such thatI � J 	 � K L . . � P � Q R 	 � � 	 � � - Q �� �� J 	 � K , T , � � P � Q R 	 � � - � � 	 � � - Q �� � (17)

and similarly for � � , � � , � � and � � then condition (16) is sat-
isfied. Once we pick six integers following the above rules, con-
dition (4) assures that inequality (15) holds for those particular
integers. Given noisy observations, the procedure for estimating� [ C � \ C � ] C � G C � , � � � � � � � � V , by the 3-D MDF algorithm is
summarized in Table 1. We use � W � X to denote the noisy counterpart
of � W � . Notice that at step 4) in Table 1, due to the rich structure of
the Khatri-Rao product of Vandermonde matrices, there are many
ways to derive estimates of � [ C � \ C � ] C � from

# X and $ X ; these
may be combined, e.g., via simple averaging.
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Table 1. The 3-D MDF algorithm

1) Form
�� � and

�� � from � � using (5), (6), (9), and (10). The
integers � � � � � � � � � � � � � � , and � � are chosen accord-
ing to (17).

2) Compute the 	 principal left singular vectors (i.e., � � ) of� �� � 
 �� � 
 � 
 . Partition � � into � � � and � � � as in (12).

3) Compute the eigenvectors of � � � 	 � � � , that is � 
 
 � � � in (13).
Obtain

� � � � and � � using (14).

4) The first row of
� � � � is

� � � � � � � � � � � � � � � � � , the sec-
ond, � � � 
 � � th and � � � � � 
 � � th rows of �
are

� � � � � � �� � � � � � � � � � � �� � , � � � � � � � � � � � � � � � � � � � � � and� � � � � � �� � � � � � � � � � � �� � respectively. � � � � ! �  � " � � � �  � are
paired up automatically.

A simple way of estimating, e.g.,
"  , would be the following.

Pick up the # -th column of � and evaluate the element-wise ra-
tios of the second, third, � � � , � � -th row over the first, second, � � �
, � � � $ � � -th row respectively. Following the same procedure for
the remaining � � � � � $ � � groups of � � rows of the # -th column
of � , we obtain a collection of point estimates for � � � % . The same
procedure can be carried out for the # -th column of

�
, yielding

another collection of point estimates; all these point estimates are
averaged to obtain the estimate of � � � % . The estimates of � �  � !  �
can be derived in a similar manner. The above process is the one
used in the simulations.

2.2. Single-Snapshot 3-D RARE

3-D RARE [4] is one of the best available multidimensional har-
monic retrieval techniques, surpassing earlier techniques (e.g., [1],
as shown in [4]), and remaining close to the Cramér-Rao Bound
once SNR is beyond a certain threshold. RARE was originally
proposed for application to a signal subspace extracted from a co-
variance matrix. 3-D RARE exploits the fact that the said subspace
is spanned by a double Khatri-Rao product of three Vandermonde
matrices.

Estimation of the covariance matrix requires multiple snap-
shots, i.e., realizations of the 3-D harmonic mixture with different
complex amplitudes. Alternatively, for a single harmonic mixture
(snapshot), a suitable subspace can be extracted directly from (11).
Notice that � in (11) has the required structure (double Khatri-Rao
product of three Vandermonde matrices) for the application of 3-D
RARE. This mode also exploits 3-D conjugate folding to overde-
termine the problem, just like 3-D MDF. However, in 3-D RARE
and in 3-D MDF two fundamentally different structural proper-
ties of the signal subspaces in (11) are exploited for extracting the
signal parameters. For this reason, in 3-D RARE the subspace di-
mensions are restricted to

& � � � � � � ' 	 and � � � � � � ' 	
rather than as in (17).

3. SIMULATION RESULTS

We report the results of two simulation experiments, for � � � � �
data and 	 ) * (3-D) harmonics in both cases.

The data is generated according to (2), and complex circular
Gaussian white noise (in all three dimensions) is added. The fre-

quencies are held fixed throughout the experiments:

� � � � � � � � , � ) � � � � � - � � � � � - � � � * � - � �
� ! � � ! � � ! , � ) � � � � � � - � � � � � � - � � � � � � - � �

� " � � " � � " , � ) � � � � � � - � � � &
� � - � � � * � 	 - � �

In the first experiment, new amplitudes are generated for each
run, according to an i.i.d. circular Gaussian distribution. In the
second one they are generated once and remain fixed throughout.

The number of Monte-Carlo runs is � � � � , for the first ex-
periment, and

&
� � � , for the second one. SNR is calculated by

averaging

 � � ) � � � � � � �

� � � �
� � � � � �

where � �
is the variance of the complex white noise. For 3-D

MDF, the parameters � � , � � , � � , � � , � � , � � were chosen ac-
cording to (17); for 3-D RARE, the associated parameters were� � ) � � ) � � ) * , � � ) � � ) � � ) � . In Fig. 1 and
Fig. 2 we plot the root mean square error (RMSE) of the MDF and
RARE algorithms for the estimation of the aforementioned angular
frequencies for the first and the second experiment respectively.

The two algorithms provide comparable results. Based on nu-
merous experiments, our experience is that 3-D MDF tends to per-
form somewhat better when operating closer to the identifiability
bound, whereas 3-D RARE has an edge when the problem is heav-
ily overdetermined.

4. CONCLUSIONS

We have considered the 3-D harmonic retrieval problem in the con-
text of double-directional MIMO wireless channel sounding. Two
new algorithms were developed, based on 3-D conjugate folding.
One stems from identifiability considerations, as in [3]; the other
from covariance-domain 3-D RARE, but using 3-D conjugate fold-
ing to bypass the need for multiple snapshots. Simulations indicate
that these algorithms are competitive performance-wise.

We are currently working towards the analysis of real mea-
surement campaign data, courtesy of FTW.
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Fig. 1. � � � � � array, i.i.d. circular complex Gaussian amplitudes.
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Fig. 2. � � � � � array, fixed complex amplitudes.
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