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ABSTRACT

We consider the problem of direction of arrival estimation in
the presence of unknown spatially nonuniform noise. A subspace
separation approach is applied, based on successive array element
elimination, to isolate the contribution of the noise powers. A high
resolution estimator based on MUSIC is described for nonuniform
noise. Performance of the estimator is assessed through simula-
tions and is compared to the Cramér-Rao Bound.

1. INTRODUCTION

Plane wave Direction Of Arrival (DOA) estimation using sensor
arrays with a known geometry, such as Uniform Circular Arrays
(UCA) or Uniform Linear Arrays (ULA), has received consider-
able attention in the literature [1]-[5]. The main estimation tech-
niques which have been proposed are classified as eigen-decomp-
osition and subspace fitting methods [2]-[4], or Maximum Likeli-
hood (ML) techniques [1, 5].

High resolution methods such as MUSIC [2] are attractive due
to the fact that under some conditions, they have the ability to sur-
pass the limits related to classical Fourier-based methods [4]. Gen-
erally these methods rely on the partition of the observation space
into a signal and noise subspaces. When the common assumption
of spatially uniform noise is verified, it is possible to fully exploit
the information embedded in the eigenvalues of the covariance ma-
trix of data to perform subspace separation. When the noise is not
uniform, i.e., when the noise powers are different from one sensor
to another, it is not possible to use the eigenvalues of interest, un-
less the Signal to Noise Ratio (SNR) is extremely high and the an-
gular separation between the DOAs is large enough. A number of
cases where nonuniform noise is observed are described in [5] and
a model highlighting its structure was addressed for the problem
of DOA estimation, where the number of sources is known in ad-
vance. An efficient method based on ML was suggested. However,
the method involves a highly nonlinear cost function and iterative
optimization routines to bypass direct identification of the signal
or noise subspaces.

In what follows, we propose a subspace separation method for
a spatially nonuniform noise environment. The method copes with
the spatial non-uniformity of the noise by successively eliminating
the contribution of single elements from the array. A computation-
ally more attractive high resolution estimator, Non-Uniform MU-
SIC (NU-MUSIC) is proposed where the cost function reduces to
a 1-D search over the DOA range.

2. DATA MODEL

Consider an array of M sensors receiving P narrow-band signals
from sources with unknown DOAs, θ = [θ1, θ2,. . ., θP ]T , where
(.)T stands for matrix transpose. The sources are assumed to be
coplanar and located in the far field. The number of sources P is
assumed to be known and satisfy P < M .

The received signal vector at instant i can be modeled as [1, 5]

x(i) = A(θ)s(i) + n(i), i = 1, . . . , L (1)

where
A(θ) = [a(θ1),a(θ2), . . . , a(θP )] (2)

is the (M×P )-dimensional steering matrix and a(θp), p=1,. . .,P
are the vectors of the array response to the directions θ. The
functional form of vectors a(θp) is assumed known. s(i) is the
P -dimensional vector of the source signals and n(i) is the M -
dimensional vector of white sensor noise.

The additive noise n(i) is assumed to be a zero-mean spatially
and temporally white Gaussian process with an unknown diagonal
covariance matrix Q, i.e.,

Q = E
{
n(i)nH(i)

}
= diag {q} (3)

where (.)H denotes Hermitian transpose and E(.) expectation. Spa-
tial non-uniformity of the noise translates to different powers from
one sensor to another, such that

q = [σ2
1 , σ2

2 , . . . , σ2
M ]T (4)

The source signals and the noise are assumed to be uncorre-
lated. The array covariance matrix is therefore given by

R = E
{
x(i)xH(i)

}
= A(θ)RsA

H(θ) + Q (5)

where Rs = E
{
s(i)sH(i)

}
is the source signal covariance ma-

trix. The received signal waveforms may be regarded as a random
zero-mean Gaussian process [5, 6], satisfying the following

x(i) ∼ N (0,R) (6)

Alternatively, if the received signals are assumed to be determinis-
tic and unknown, they satisfy [5, 6]

x(i) ∼ N (A(θ)s(i),Q) (7)
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3. SUBSPACE SEPARATION APPROACH

As the noise powers are different from one sensor to another, we
alleviate the effect of noise due to the individual sensors by remov-
ing one element from the array.

For simplicity and without loss of generality, assume that we
discard the 1-st element of the array. Thus, a reduced (M−1)×P
dimensional steering matrix is obtained as follows

A1(θ) = [a1(θ1), a1(θ2), . . . , a1(θp)] (8)

where the vectors a1(θp) are the same as in (2) with the 1-st ele-
ment removed. Similarly to (5), the covariance matrix of the col-
lected data over the reduced (M − 1)-element array is given by

R1 = A1(θ)RsA
H
1 (θ) + Q1 (9)

where the reduced noise covariance matrix Q1 is defined as

Q1 = diag {q1} (10)

with q1 = [σ2
2 , . . . , σ2

M ]T . Observe that R1 is a sub-matrix of R,
i.e.,

R =

[
r11 rH

r R1

]
(11)

where r11 is the (1, 1)-th element of R and vector r is defined as

r = A1(θ)Rsb
H
1 (12)

with b1 being the removed 1-st row of A(θ).
Applying eigen-decomposition to the reduced matrix R1 re-

sults in
R1 = EDEH (13)

with
E = [e1, . . . , eM−1] (14)

D = diag {λ1, . . . , λM−1} (15)

where λm, m = 1, . . . , M −1, are the eigenvalues of R1, and em

are their corresponding eigenvectors.
Using E of (14), we define a matrix U as follows

U =

[
1 0T

0 E

]
(16)

where 0 is an (M − 1)-dimensional vector of zero elements. It is
straightforward to verify that U is unitary since it satisfies UUH =
I, where I denotes the identity matrix. The resulting unitary trans-
formation of the data covariance matrix is similar to the one intro-
duced in [7]. Applying the unitary transformation U to the covari-
ance matrix R leads to

R = UHRU (17)

=

[
r11 rHE
EHr EHRME

]

=

[
r11 cH

c D

]
(18)

Let |c1| ≥ |c2| ≥ . . . ≥ |cM−1| be the ordered magnitudes
of the elements of vector c in (18). From (12), note that the m-th
element cm, has the following structure

cm = eH
mA1(θ)Rsb

H
1 (19)

The elements cm of relation (19) can be interpreted as the pro-
jection of the 1-st column of R onto the m-th eigenvector, em, of
R1. Moreover, due to the fact that the noise subspace is orthogo-
nal to the direction matrix A1(θ), it is easy to verify that elements
cm satisfy the following

cm

{
= 0, if em is a noise eigenvalue.
�= 0, if em is a signal eigenvalue.

(20)

From a geometrical perspective, the first M − 1 eigenval-
ues of the transformed covariance matrix R are the centers of
M − 1 Gerschgorin disks on the complex plane [7]. The mag-
nitude of the Gerschgorin radii indicates the multiplicity of the
eigenvalues and the subspaces that their eigenvectors span [7, 9].
In the case of the transformed covariance matrix R of equation
(17), using Gerschgorin’s theorem [9], the radii of these disks, ρm,
m = 1, . . . , M − 1, are shown to be the magnitude of the ele-
ments cm, i.e., ρm = |cm|. Two distinct subsets of Gerschgorin
disks can be easily identified. The first subset corresponds to the
signal subspace for the first p radii, |c1|, . . . , |cP |, and the second
one corresponds to the noise subspace for the smallest and equal
M − 1 − P radii, |cP+1|, . . . , |cM−1|. Thus, based on the infor-
mation contained in the elements cm, m = 1, . . . , M − 1, it is
possible to separate the noise and signal subspaces.

4. NON-UNIFORM MUSIC ESTIMATOR (NU-MUSIC)

Because the noise is not spatially uniform, it is not possible to or-
der the eigenvalues of R to separate the signal and the noise sub-
spaces. Instead we use the information provided by the elements
of vector c as it is defined in (18), since they satisfy the following

|c1|≥|c2|≥. . .≥|cP |≥|cP+1|= |cP+2|= . . .= |cM−1|= 0 (21)

When a criterion on the separation between the signal and
noise subspaces is available, it is possible to use directly subspace-
separation-based estimators to retrieve the DOAs θ from the re-
duced covariance matrix R1.

Let V be a matrix whose columns are the M − 1 − P eigen-
values of R1, corresponding to the smallest M − 1 − P elements
|cm| (or equivalently, Gerschgorin radii). In other words,

V = [eP+1, . . . , eM−1] (22)

As V spans the noise subspace, it is orthogonal to the direction
vectors a1(θp), p = 1, . . . , P . Thus a Non-Uniform MUSIC (NU-
MUSIC) spectrum can be defined as follows

S1(θ) =
1

aH
1 (θ)VVHa1(θ)

(23)

where subscript 1 represents the index of the removed element of
R in forming R1. The cost function S1(θ) provides a solution
over the range of θ. The estimates of θ are obtained as

θ̂ = arg max
θ

S1(θ) (24)

Since the noise powers are not equal from one array element to
another, accuracy of the spectrum S1(θ) depends on the index of
the particular array element to be removed. It is clear that M dis-
tinct NU-MUSIC spectra, Sm(θ), m = 1, . . . , M , can be obtained
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Fig. 1. NU-MUSIC, MUSIC and CRB vs SNR.

from the same array and an improved estimator can be formulated
by averaging the result over the M spectra as follows

S(θ) =
1

1
M

∑M
m=1 S−1

m (θ)
(25)

with

θ̂ = arg max
θ

S(θ) (26)

The NU-MUSIC estimator in (23) involves the eigen-decomp-
osition of an (M − 1) × (M − 1)-dimensional covariance matrix
and the averaged NU-MUSIC in (25), involves M similar decom-
positions. The resulting spectrum function does not involve it-
erative non-linear optimization and the solution reduces to a 1-D
search over the range of DOAs. Note that other beamforming and
high resolution estimators can be used in a similar way to MU-
SIC, as the prerequisite separation between the signal and noise
subspaces is provided by (21).

5. SIMULATION RESULTS

In what follows we show the global performance of the NU-MUSIC
estimator and compare it to the stochastic and deterministic Cramér-
Rao Bound (CRB), according to whether the data is assumed to be
random or deterministic unknown, i.e., satisfying assumptions (6)
or (7), respectively. In the examples the averaged NU-MUSIC is
presented along with the “leave-one” NU-MUSIC resulting from
the suppression of the first array element. The classical uniform
MUSIC is also presented to illustrate the degradation in estimation
performance due to nonuniform noise. The explicit expressions for
the CRB follow from [5, 8]. Note that the CRB corresponding to
the performance of the “leave-one” NU-MUSIC is evaluated with
the reduced model, i.e., from covariance matrix R1. The CRB
for the augmented model corresponding to R is also shown for
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Fig. 2. NU-MUSIC, MUSIC and CRB vs L.

reference to assess the performance of uniform MUSIC. The fig-
ures show the CRBs for the “’leave-one” NU-MUSIC and uniform
MUSIC only. The assessment of the performance of the averaged
NU-MUSIC against these bounds is indicative only and a proper
bound for NU-MUSIC is yet to be derived. For the simulations,
the true number of sources is set to P = 2 and a Uniform Linear
Array (ULA) with M = 6 sensors is used. All the examples illus-
trate the performance in terms of the Mean Square Error (MSE) of
the estimated DOAs, over 200 Monte-Carlo runs.

Figure 1 illustrates the performance with respect to the Sig-
nal to Noise Ratio (SNR). The fixed parameters are the number
of snapshots L = 100 and the angles of arrival θ = [0◦, 45◦]T ,
whereas the SNR is set to vary from 0 dB to 25 dB. The noise pow-
ers are given by q = [3.3, 2.6, 5.2, 1.2, 4.1, 6.0]T , therefore the
Worst Noise Power Ratio (WNPR)1 as defined in [5] is WNPR=20.
It is clear that NU-MUSIC outperforms the uniform MUSIC in
nonuniform noise as the latter relies on the misleading order of
the eigenvalues and a mis-modeling of the additive noise. Note
that the effect of the mis-modeling is such that even at high SNR,
MUSIC does not reach the CRB for the settings of the example.
As expected, the averaged version of NU-MUSIC exhibits better
results over the “leave-one” estimator.

Figure 2 illustrates the performance with respect to the num-
ber of snapshots L which varies from 20 to 500. The fixed param-
eters are SNR=10 dB and the angles of arrival θ = [0◦, 45◦]T .
The same noise powers as for the previous example are used, thus
the same WNPR applies. Similarly, MUSIC fails to retrieve the
DOAs whereas NU-MUSIC takes into account the non-uniformity
of the noise. The slow convergence of the algorithms to the CRB
is due partly to the effect of the relatively high WNPR and MU-
SIC does not converge asymptotically to the CRB for the settings
of the example. The same comments as before can be made on
the relative performances of the “leave-one” NU-MUSIC and the
averaged NU-MUSIC.

1In [5], WNPR = σ2
max/σ2

min.
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Fig. 3. NU-MUSIC, MUSIC and CRB vs ∆θ.

Figure 3 illustrates the performance with respect to the angu-
lar resolution ∆θ. The fixed parameters are SNR=10dB and the
number of snapshots L = 100. The first angle of arrival is fixed
at θ1 = 0◦ whereas the second one, θ2, varies from 0◦ to 25◦.
The same noise parameters as in the previous examples are used.
As expected, NU-MUSIC performs better with increasing angu-
lar resolution and it outperforms uniform MUSIC. Note that the
performance of MUSIC is expected to improve only if the three
parameters, i.e., SNR, L and ∆θ are increased simultaneously,
otherwise the effect of nonuniform noise, through the WNPR is
predominant. The same comments as before can be made on the
relative performances of the “leave-one” NU-MUSIC and the av-
eraged NU-MUSIC.

Figure 4 illustrates the performance with respect to the WNPR.
The fixed parameters are SNR=10dB, the number of snapshots
L = 100 and the DOAs θ = [0◦, 45◦]T . The noise parameters are
chosen so that the WNPR is varied from 1 to 100. Note that the
performance of NU-MUSIC degrades as the noise becomes more
nonuniform. The example gives an appreciation of the limitation
due to the WNPR in the previous examples. Similar comments
as for the previous examples can be made on the relative perfor-
mance of the uniform MUSIC, the “leave-one” NU-MUSIC and
the averaged NU-MUSIC.

6. CONCLUSION

A high resolution subspace-separation-based estimator, the Non-
Uniform MUSIC (NU-MUSIC), has been proposed for angle of
arrival estimation in spatially nonuniform noise. The proposed es-
timator applies a transformation on the covariance matrix of the
data, resulting from array element suppression to limit the effect
of different noise powers. Simulation results have shown the accu-
racy of the estimation in nonuniform noise.
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