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ABSTRACT 

The most common methods for localization of radio signal 

emitters are based on measuring a specified parameter 

such as signal Angle-of-Arrival (AOA) or Time-of-

Arrival (TOA). The measured parameters are then used to 

estimate the transmitter location. Since the measurements 

are done at each base station independently, without using 

the constraint that all AOA/TOA estimates must 

correspond to the same transmitter they are sub-optimal. 

Moreover, if the number of array elements at each base 

station is M the number of co-channel simultaneous 

transmitters that can be localized is M-1. We propose a 

technique that uses exactly the same data as the common 

AOA/TOA methods but the position determination is 

direct. The proposed method can handle LM-1 co-channel 

simultaneous signals, using L base stations. Although 

there are many stray parameters only two-dimensional 

search is required for a planar geometry and a three-

dimensional search for the general case. The technique 

exploits the principles of the MUSIC algorithm, and 

provides a natural solution to the measurements-sources 

association problem that is encountered in AOA/TOA 

based systems. 

1. INTRODUCTION 

The problem of emitter location attracts much interest in 

the Signal Processing, Vehicular Technology and 

Underwater Acoustics literature. Defense oriented 

location systems have been reported since world war I. 

Civilian systems are now in use for the localization of 

cellular phone caller, spectrum monitoring and law 

enforcement. Perhaps the first paper on the mathematics 

of emitter location, using Angle-of-Arrival (AOA), is due 

to Stansfield [1]. Many other publications followed 

including a fine review paper by Torrieri [2]. The papers 

by Krim and Viberg [3] and Wax [4] are comprehensive 

review papers on antenna array processing for location by 

AOA. Recently, Van-Trees [5] published a book that is 

fully devoted to Array Processing. Positioning by Time-

of-Arrival (TOA) and its derivatives (DTOA, EOTD) is 

used extensively in cellular phone localization, radar 

systems [6], and underwater acoustics [7]. In underwater 

acoustics Matched-Field Processing (MFP) is viewed as a 

promising procedure for source localization [8]. MFP can 

be interpreted as the Maximum a Posteriori (MAP) 

estimate of location given the observed signal at the 

output of an array of sensors [8, 9]. Other interpretation of 

MFP is the well-known beamforming extended to non-

planar wave fields and unknown environmental 

parameters. The majority of the literature on MFP focuses 

on single source localization. 

In this correspondence we discuss a method that solves 

the localization problem using the data collected at all 

sensors at all base stations together, in contradiction to the 

traditional AOA/TOA approach that is composed of two 

separate steps: 1) AOA/TOA independent estimates and 

2) triangulation based on the results of the first step. It is 

rather obvious that measuring AOA/TOA at each base 

station separately and independently is suboptimal since 

this approach ignores the constraint that all measurements 

must correspond to the same source. Moreover, the base 

stations are geographically separated and therefore often 

not all base stations observe the same transmitter. Thus 

the system must somehow ensure that all AOA/TOA 

measurements used to locate a specific source correspond 

to the same source. In the case of co-channel simultaneous 

sources, the localization system confronts the association 

problem of deciding which of the multiple AOA/TOA 

estimates reported by the base stations corresponds to 

which source.   

The Direct Position Determination (DPD) method that we 

propose takes advantage of the rather simple propagation 

assumptions that are usually used for Radio Frequency 

(RF) signals. We assume line of sight propagation with 

unknown complex attenuation at each base station. We 

also assume that all base stations are time synchronized to 

the level provided by GPS (approximately 50 

nanoseconds.) The assumptions that we make are realistic 

and have been verified with real data. The proposed 

method uses both the array response at each station and 

the time of arrival at each station. We derive the 

Maximum Likelihood Estimate (MLE) of the sources 

position [11]. However, the cost function associated with 

MLE requires a prohibitive multidimensional search in the 

multiple source case. Thus, we resort to the ideas of R.O. 

Schmidt [10] also known as the MUSIC algorithm. We 

show that for a planar geometry of sources and base 
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stations a two-dimensional search is sufficient to localize 

all sources. For a general geometry only a three 

dimensional search is needed. A side benefit of the DPD 

is its ability to determine the positions of more sources 

than the number of sensors at each base station. The DPD 

technique requires the transmission of the received signals 

(possibly sampled) to a central processing location. 

However, AOA and TOA require only the transmission of 

the measured parameters to the central processing 

location. This is the cost of employing DPD. The paper 

focuses on the multiple signal case.

2. PROBLEM FORMULATION AND ALGORITHM 

Consider a transmitter and L base stations intercepting the 

transmitted signal. Each base station is equipped with an 

antenna array consisting of M elements. Denote the 

transmitter position by the vector of coordinates, p. The 

signal observed by the l-th base station array is given by  

      0( ) ( ) ( ( ) ) ( );l l l l lt b s t t tr a p p n                   (1) 

where ( )l tr  is a time-dependent 1M  vector, 
lb  is an 

unknown complex scalar representing the channel effect 

(attenuation), ( )la p is the l-th array response to a signal 

transmitted from position p, and 0( ( ) )ls t tp  is the 

signal waveform, transmitted at time 0t and delayed by 

( )l p .  The vector ( )l tn  represents noise and 

interference, including multipath, observed by the array. 

The observed signal can be partitioned into K sections and 

each section can be Fourier transformed. The result of this 

process is given by the following equation 

( )
( , ) ( ) ( , ) ( , )l kj t

l l l lk b s k e k
p

r a p n     (2) 

where ( , )l kr is Fourier transform of the k-th section of 

the observed signal, ( , )s k is the Fourier transform of the 

k-th section of the signal, kt  represent the transmit time of 

the k-th section and finally, ( , )l kn represent the Fourier 

transform of the k-th section of the noise waveform. 

For easy exhibition we define the following vectors and 

scalars, 

( )

( , ) ( , )

( , ) ( )

k

l

j t

j

l l l l

s k s k e

b b e
p

a p a p
                  (3) 

which leads to the following representation of equation 

(2), 

( , ) ( , ) ( , ) ( , )l l l lk b s k kr a p n    (4) 

We observe that all information about the transmitter 

position is embedded in the vector ( , )l lba p . If the 

number of emitters is 1q  equation (4) becomes, 

1 1

1

( , ) ( , ) ( , )

( , ), ( , )

( , ) ( , ), ( , )

l l l

l l l l q lq

T

q

k k k

b b

k s k s k

r A s n

A a p a p

s

                  (5) 

Since the vector ( , )ks is the same at all base stations we 

can concatenate the observed vectors at all base stations 

and form the following equation that encompasses all the 

data and all the information of the location system at 

hand, 

1

1

1

( , ) ( , ) ( , )

( , ) ( , ), ( , )

( , ) ( , ), ( , )

,

T
T T

L

T
T T

L

T
T T

L

k k k

k k k

k k k

r As n

r r r

n n n

A A A

                  (6) 

It is straightforward to write the probability density 

function, under appropriate assumptions, of the 

observations presented in (6) as a function of the 

unknown parameters. The unknown parameters include 

the complex attenuation factor of each signal at each base 

station, the signal waveforms, and the location of each 

transmitter. The Maximum Likelihood Estimator will 

therefore require a prohibitive multidimensional search. 

It is now clear that one can follow the steps leading to the 

MUSIC algorithm. First note that 
2

2

( ) E ( , ) ( , ) ( )

( ) E ( , ) ( , )

E ( , ) ( , )

H H

r s

H

s

H

k k

k k

k k

R r r AR A I

R s s

n n I

   (7) 

where we assumed that the noise is temporally and 

spatially white and uncorrelated between sensors and 

frequencies and uncorrelated with the signals. Thus, the 

column vectors of A are orthogonal to the noise subspace 

of ( )rR and contained in the signal subspace. Following 

the MUSIC algorithm we propose the following cost 

function, 

1 1

1

( , ) ( , ) ( ) ( ) ( , )

( , ) ( , ), ( , )

,

H H

s s

T
T T

L L

T

L

Q

b b

b b

p b a p b U U a p b

a p b a p a p

b

   (8) 

where sU  is a ML q matrix consisting of the 

eigenvectors of rR  corresponding to the q largest 

eigenvalues. Recall that the vectors ( , )a p b contain the L

unknown complex attenuation coefficients lb  in addition 

to the unknown location p. The minimum points of 
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Q(p ,b ) depend on all unknowns and therefore require a 

L+2 dimensional search. In order to reduce this search we 

propose to represent ( , )a p b as follows, 

1 ( ) ( )

1

( )

diag ( ) , ( ) Lj jT T

L

L M

e ep p

a p Hb

a p a p

H I J

   (9) 

where  is a diagonal matrix whose elements are the 

elements of the response vectors of the array in all base 

stations, LI stands for the L L  identity matrix, 

MJ stands for a 1M  column vector of ones, and finally 

 stands for the Kronecker product. Substituting 

equation (9) in (8) we get, 

( ) ( ) ( )H H H H

s sQ p b H U U Hb   (10) 

Without loss of generality, we assume that the norm of b

is one. Hence for any assumed position p the maximum of 

( )Q p corresponds to the maximal eigenvalue of the matrix 

D defined by, 

( ) ( )H H H

s sD H U U H                 (11) 

Therefore, equation (10) reduces to  

max( ) ( )Q p D                                             (12) 

where the right side of (12) denotes the largest eigenvalue 

of D, and the matrix D is a function of the data, the array 

response at each base station, the location of the base 

stations and the unknown emitter location p.  It is clear 

that the maximization of (12) requires only a two-

dimensional search for planar geometries or 3-D search in 

the general case. It is interesting to note that the 

dimensions of the matrix D are L L which are usually 

rather small. 

3. NUMERICAL RESULTS 

In order to examine the performance of the advocated 

method and compare it with the traditional approach we 

performed extensive Monte-Carlo simulations. Some 

examples are shown here. Consider 4 base-stations placed 

at the corners of a 4 Km 4 Km square. Each base-

station is equipped with a uniform linear array of only 3 

antenna elements. The two transmitters are located at 

coordinates (0, 1.5) and (0, -1.5) Km. Each location 

determination is based on 30 snapshots of 4 Fourier 

coefficients. The SNR is varied between –10 dB and +10 

dB at 2.5 dB steps. At each SNR value we performed 50 

experiments in order to obtain the statistical properties of 

Figure 1: RMS miss distance for DPD and traditional AOA. 

Figure 2: Mean miss distance for DPD and traditional AOA. 

Figure 3: DPD cost function, 3 transmitters, 4 base stations, each 

equipped with a linear antenna array of 3 elements. 

II - 83

➡ ➡



the performance. The path-loss attenuation magnitude is 

selected at random using normal distribution (mean=1, 

std=0.1) and the attenuation phase is uniformly distributed 

in [ , ] . We applied 2 different techniques in order to 

locate the transmitter: 

1. Angle of Arrival estimation using MUSIC at 

each base station independently. 

2. Direct Position Determination (DPD) according 

to equation (12) 

The performance evaluation is based on the statistics of 

the miss distance i.e., the distance between the true emitter 

position and the estimated emitter position. 

We used 2 different criteria: 

1. Root Mean Square (RMS) of miss distance 

(Figure 1) 

2. Mean of miss distance (Figure 2) 

The plots indicate that DPD is superior to the traditional 

approach of independent estimates at each base station. 

The advantage of DPD is at low SNR. At high SNR both 

methods give excellent results.  

Obviously, the traditional approach cannot localize 3 co-

channel simultaneously emitters with only 3 antenna 

elements at each base station. However, the DPD can 

handle this situation. Figure 3 shows the DPD cost 

function for 3 separate emitters. 

4. CONCLUSIONS 

We have proposed a direct position determination 

technique for localizing multiple narrowband radio 

frequency sources. The technique can locate more sources 

than the traditional AOA approach. Moreover, DPD 

provides better accuracy than traditional AOA and it does 

not encounter the association problem of independent 

AOA measurements at each base station. Surprisingly, the 

DPD does not impose higher computation load than 

traditional methods since the traditional approach includes 

not only AOA/TOA estimation but also a rather heavy 

triangulation algorithm (fix algorithm) that must reject 

wild measurements and must find the right association of 

different AOA measurements. 

The proposed technique uses the MUSIC approach in 

order to reduce the complexity of the algorithm. The 

advantages of DPD do not come without a price. While in 

traditional methods only AOA/TOA estimates must be 

transferred to a central processing location for 

triangulation, the DPD requires raw signal data to be 

transferred to a common processor. 

Finally, the extension of the DPD approach to known 

signal waveforms and multipath scenarios will be reported 

in the near future. 
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