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ABSTRACT

Many man-made signals encountered in communications,
such as BPSK, FSK, AM signals, exhibit cyclostationarity.
By exploiting the cyclostationarity, Cyclic MUSIC has been
shown to be able to separate the signals with different cycle
frequencies, thus, to be able to perform signal selective Di-
rection of Arrival (DOA) estimation. However, both Cyclic
MUSIC and the conventional MUSIC suffer performance
deterioration when the signals are either wideband or co-
herent. In this paper we propose a new method that com-
bines the Spatial Smoothing (SS) method with a revised
Cyclic MUSIC named Averaged Cyclic MUSIC. Simula-
tion results show the effectiveness of the proposed method
in signal selective DOA estimation for wideband signals un-
der a multipath environment.

1. INTRODUCTION

Among subspace based DOA estimation methods, MUSIC
[1], [2] is relatively simple and effective, and is thus most
studied. To improve the performance of the conventional
MUSIC, Cyclic MUSIC [3] is shown to be effective to com-
bat the noise and interference by exploiting cyclostationary
property possessed by most man-made signals [4]. How-
ever both Cyclic MUSIC and the conventional MUSIC have
two shortcomings. One is that they suffer performance de-
terioration when the signal is wideband. The other is their
inability for DOA estimation of coherent signals, i.e., sig-
nals resulted from multipath propagation. While some al-
gorithms have been proposed to extend Cyclic MUSIC to
wideband signals, such as SC-MUSIC [5] and Wideband
Cyclic MUSIC [6], they would fail under a multipath en-
vironment when coherent signals exist. Among efforts to
DOA estimation for wideband signals under multipath, co-
herent signal-subspace method [7] uses focusing matrices to
“align” steering vectors of different frequency bins. How-
ever, this method works only in a small sector of the search
space. On the other hand, Hankel Approximation Method
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(HAM) [9] which incorporates a preprocessing scheme re-
ferred to as Spatial Smoothing (SS) [8] is proposed to cope
with the problem of coherent cyclostationary signals. This
method decorrelates the signals by separating the array of
antennas into several overlapping subarrays. However, HAM
as proposed in [9] is only for narrowband signals.

In this paper, we propose a DOA estimation method for
wideband cyclostationary signals under multipath. First we
modify Cyclic MUSIC so that it can perform DOA esti-
mation on wideband cyclostationary signals. Unlike SC-
MUSIC and Wideband Cyclic MUSIC, we perform cross
cyclic correlation of the array signals. Then in order to
formulate in the same way as for narrowband signals, we
average the cyclic correlation, thus naming this method
as Averaged Cyclic MUSIC. Then SVD can be performed
as in the conventional MUSIC algorithm, and finally the
DOA of the wideband cyclostationary signal can be found.
To cope with the problem of coherent signals, we incorpo-
rate the SS scheme into our Averaged Cyclic MUSIC algo-
rithm to decorrelate the coherent wideband cyclostationary
signals. For each subarray, the averaged cyclic correlation
matrix is calculated and then added up to get a spatially
smoothed cyclic correlation matrix. We also note that the
spatial smoothed cyclic correlation matrix can be obtained
by rearranging the cyclic correlation matrix of the entire ar-
ray, making the computation more efficient.

2. EXISTING CYCLIC MUSIC ALGORITHM

Consider a Uniform Linear Array (ULA) of size N that re-
ceives Is signals from directions θi, i = 1, · · · , Is. The
incident waves are assumed to be plane waves from far field
sources. The received narrowband signal can be written as

x(t) = As(t) + n(t) (1)

where the vector s(t)=[s1(t), · · · , sI(t)]
T contains the sig-

nals that have cycle frequency α, i.e., the Sources of Inter-
est (SOI) with I ≤ Is, the vector n(t) contains interfering
sources and noise, and the matrix A = [a(θ1), · · · ,a(θI)]
contains the steering vectors a(θi) defined as a(θi) = [1,
ej2πfd sin θi/c, · · · , ej2πf(N−1)d sin θi/c]T , for i = 1, · · · , I ,
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where d is antenna spacing and c is the speed of propaga-
tion.

Instead of calculating the correlation matrix of the re-
ceived signal in the conventional MUSIC, Cyclic MUSIC
calculates the cyclic correlation matrix which is estimated
by
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where 〈·〉 denotes time average and
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is the cyclic correlation matrix of the sources. Here n(t)
is neglected as evaluating the cyclic correlation at α retains
only those SOI. Now applying SVD to (2), we obtain

R
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where Es spans the signal subspace and En spans the in-
terference and noise subspace which are orthogonal to each
other. When the steering vector a(θ) is evaluated at the im-
pinging direction θi of the SOI, it will be lying in the signal
subspace or orthogonal to the noise subspace. Cyclic MU-
SIC thus finds the maxima of 1/
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∥∥2
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∥∥2

in terms of θ as the DOA estimate.
This method works well when the impinging signals are

narrowband. But if the signals are wideband, the received
signal can no longer be written as in equation (1), then the
algorithm would fail.

3. AVERAGED CYCLIC MUSIC ALGORITHM

In order to write the cyclic correlation matrix for wideband
signals into the form of equation (2), so that we can apply
SVD to estimate DOAs, we propose an Averaged Cyclic
MUSIC algorithm. We again consider a ULA of size N that
receives I signals with the cycle frequency α. We further
consider, due to multipath, that there are Ki coherent sig-
nals induced from the ith signal. The signal received by the
nth antenna will be

xn(t) =
I∑

i=1

Ki∑
k=1

βiksi(t − τik + (n − 1)∆ik) (5)

where βikis the attenuation factor, τik is the reference delay,
and ∆ik = d sin θik/c. Note interferences and noise are ne-
glected since most practical interferences and noise can be
safely assumed to be cyclically uncorrelated with the SOI.

For simplicity, first let’s consider there is only one SOI,
i.e. I = 1. This corresponds to the case where only one
source has the cycle frequency α, which is of interest. Then

evaluating the cyclic correlation at this specific cycle fre-
quency retains only one source. We simplify (5) as

xn(t) =

K1∑
k=1

β1ks1(t − τ1k + (n − 1)∆1k) (6)

Then the (p, n)-th element of the cyclic correlation matrix
R
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and the shift property of cyclic correlation is applied, i.e., if
y(t) = x(t + T ), then rα
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(12) is the (p, n)-th element of the N by N matrix 〈Rα
x
(τ)〉.

So putting all elements together, we obtain

〈Rα
x
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a(θ11) · · · a(θ1K1

)
]
M[

a(θ11) · · · a(θ1K1
)
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= A1MA
T
1 (14)

where a(θ1k) =
[

1 ejπα∆1k · · · ejπα(N−1)∆1k

]T
,

for k = 1, · · · ,K1 are the steering vectors. They form the
matrix A1. We notice that the averaged cyclic correlation
matrix, 〈Rα

x
(τ)〉, has a form like (2). Then it is possible to

use SVD to estimate the DOAs as long as M is full rank.
But for the above case, it is obvious that M has only rank
1, so 〈Rα

x
(τ)〉 has rank 1 too. Therefore although the Aver-

aged Cyclic MUSIC can perform wideband signal selection,
the multipaths cannot be separated by SVD. This problem
is solved in the next section.

4. SPATIAL SMOOTHING

To decorrelate the signals under a multipath environment,
we divide the array into L overlapping subarrays, such that
the lth to (M + l − 1)th antennas form the lth subarray.
There are M antennas in each subarray and the number of
total antennas is N = M + L − 1. We denote the signal
received in the lth subarray as

x
(l)(t) =

[
xl(t) · · · xl+M−1(t)

]T
(15)

and the averaged cyclic correlation matrix for this subarray
as 〈R(l)α

x (τ)〉. Similar to (14),
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The extra exponential factors are due to the fact that the lth
subarray starts from the lth sensor in the entire array and the
vector b1 is actually b

(l)
1 when l = 1. Another difference

is here the columns of A1, i.e. the steering vectors have M
instead of N elements as the number of antennas of each
subarray is M .

Although M
(l) is still rank one, by adding all L such

cyclic correlation matrices from all L subarrays, we obtain
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substitute (17) into (19), we obtain
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where B1 =
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IL is the identity matrix of size L.
We can see B1Is1

B
T
1 could be of full rank if L is greater

than or equal to K1. Consequently, the rank of 〈Rα
x
(τ)〉sub

could be K1 if min {L,M} ≥ K1. Thus when the number
of subarrays and the number of elements in each subarray is
greater than or equal to K1, all paths could be detected by
evaluating the steering vectors and the smoothed averaged
cyclic correlation matrix at α/2.

This algorithm could be extended to several signals with
the same cycle frequency. If we define

A =
[

A1 · · · AI

]
(21)
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where Ai =
[

a(θi1) · · · a(θiKi
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]
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which is of full rank as long as min {L,M} ≥ max {Ki}.
So theoretically all the steering vectors from I signals and
their multipaths can be detected.

We also note that the averaged cyclic correlation matrix
for the lth subarray, 〈R(l)α

x (τ)〉, is actually the lth submatrix
along the main diagonal of the averaged cyclic correlation
matrix for the entire array. So the algorithm could be sum-
marized as

1. Compute R
α
x
(τ) for the entire array.

2. Average R
α
x
(τ) over τ to obtain 〈Rα

x
(τ)〉.

3. Take the lth submatrix of size M by M along the
main diagonal of 〈Rα

x
(τ)〉 and add them up to obtain

〈Rα
x
(τ)〉sub.

4. Apply SVD to 〈Rα
x
(τ)〉suband find the DOA as in the

conventional MUSIC.
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5. SIMULATION RESULTS

5.1. Two Signal Case

The following simulation is tested on two BPSK signals
with raised cosine pulse shape. The baud rate is 5 MHz,
center frequency is 10 MHz, and the Signal to Noise Ratio
(SNR) is 10 dB, for both signals. We consider a simulated
system with a sampling rate of 80 MHz. 15 antennas were
assumed to receive one signal from a DOA of 30◦ and its
multipath from a DOA of 60◦ and the other signal from a
DOA of −60◦ and its multipath DOA of −20◦. 3200 snap-
shots are used in the computations. Fig.1 is obtained from
20 runs. It is seen that all wideband source DOAs and their
multipath DOAs are correctly detected.
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Fig.1. One direct path from −60
◦ and multipath from −20

◦, an-
other direct path from 30

◦ and multipath from 60
◦, are all detected

5.2. Signal Selectivity

This simulation is done to test the signal selectivity of the
algorithm. Signals used here are the same as in section 5.1
except the baud rate of one signal is changed to 2 MHz.
As cycle frequency of the two signals are different, if we
choose either signal as SOI, the other signal will be sup-
pressed, then only two paths associated with the SOI will
be detected. The results are shown in Fig.2.
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