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ABSTRACT

This paper focuses on the stochastic Cramer-Rao bound
(CRB) of direction of arrival (DOA) estimates for binary
phase-shift keying (BPSK) and quaternary phase-shift key-
ing (QPSK) modulated signals corrupted by additive circu-
lar complex Gaussian noise. Explicit expressions of the
CRB for the DOA parameter alone in the case of a sin-
gle signal waveform are given. Finally, these results are
extended to the case of two independent BPSK distributed
sources where an explicit expression of the DOA parameters
alone is given for large SNR.

1. INTRODUCTION

Stochastic CRB’s play an important role in DOA estima-
tion because they serve as a benchmark for the performance
of actual estimators and because the stochastic CRB can be
achieved asymptotically (in the number of measurements)
by the stochastic maximum likelihood (ML) method. Un-
fortunately, stochastic CRB’s appear to be prohibitive to
compute for non-Gaussian processes including discrete sig-
nal waveforms. And to the best of our knowledge, no contri-
bution has yet dealt with stochastic CRB for non-Gaussian
signal waveforms.

To cope with this difficulty, a method sometimes used
is to assume that the signals are arbitrary deterministic
sequences while the noise is circular complex Gaussian,
so that the distribution is still Gaussian and the associ-
ated deterministic CRB is easily deduced (see e.g., [1, rel.
(B.3.11)]). But the corresponding deterministic (or condi-
tional) ML method does not achieve this deterministic CRB
because the deterministic likelihood function does not meet
the required regularity conditions. Consequently, this de-
terministic CRB is only a non-attainable lower bound on
the variance of any unbiased DOA estimator. To deal with
non-Gaussian processes, another solution is to suppose that
the signals are Gaussian but not necessarily complex circu-
lar. In that case, the associated CRB is under rather general
conditions (see e.g., [2, p. 293]) the largest CRB among the
class of arbitrary distributions with given covariance matri-
ces. This approach was used in [3] for non-circular com-
plex signal waveforms such as discrete signals. But the as-

sociated CRB is only an upper bound on the true stochas-
tic CRB. Faced with the drawbacks of the two aforemen-
tioned approximations, we need an explicit expression of
the stochastic CRB under non-Gaussian distributions.

In this paper, we derive explicit expressions of the
stochastic CRB for the DOA parameter alone in the case
of BPSK and QPSK signal waveforms observed in additive
circular complex Gaussian noise.

2. DATA MODEL

Consider a BPSK or QPSK modulated signal impinging on
an arbitrary array of

�
sensors. The received signals are

bandpass filtered and after down-shifting the sensor signal
to baseband, the in-phase and quadrature components are
paired to obtain complex signals. We assume Nyquist shap-
ing and ideal sample timing so that the inter-symbol inter-
ference at each symbol spaced sampling instance can be ig-
nored. In the absence of frequency offset but with possible
phase offset, the signals at the output of the matched filter
can be represented as:

� � � � � 	 �  � � � � � � � � � � �
where 	 � is the steering vector parametrized by the scalar
DOA parameter � � . We suppose � 	 � � � � �

. � � �� �  " $ & ( � where * ( � + � - � / 1 1 1 / 2 are independent, identically,
distributed (IID) random symbols taking values 3 � [resp.3 5 6 8 6 3 ; 5 6 8 6 ] with equal probabilities for BPSK [resp.
QPSK] modulations, where = � and � � are considered as
unknown parameters. * � � + � - � / 1 1 1 / 2 are IID

�
-variate zero

mean complex circular Gaussian with ? * � � � B � + � � �D F G .
Consequently * � � + � - � / 1 1 1 / 2 are IID

�
-dimensional random

variables whose probabilitydensity function (PDF) is mixed
Gaussian:

H * � � J K + � �L M G � � GD
NO P - �  R T V W Y Z & [ \ ] & ^ _ a & T bZ b c

with
L � 6 and ( P � 3 � [resp.

L � e and ( P �
3 5 6 8 6 3 ; 5 6 8 6 ] for BPSK [resp. QPSK] modulated sig-

nals and where K i j k� * � D � � � � = � � � � + 2
.
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3. STOCHASTIC CRB FOR BPSK AND QPSK
SIGNALS

Because the distribution of these models are simple mixed
Gaussian, an explicit expression of the Fisher information
matrix (FIM) is proved in [6] using well known properties
of the Gaussian distribution.

Theorem 1 The FIM associated with the stochastic BPSK
and QPSK modulated signals are given by

� � � � �� � �
� � � 		 � � �

with

� � �  � �� �� 	 
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 � � � 	 � � � �
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 � � � 	 � � � � � � � " # % � # ' � "� �� 	 
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with � � � !� � � ��� � � and � ' � � � !� = # �= > � and where � � and � � are the
following decreasing function of � :

� � 	 � � � � !� # $ 4
% � & @ B D$ D E � # $ G ��H I K L 	 E % � � � N E

�

� � 	 � � � � !� # $ 4
% � & @ B D$ D

# $ G ��H I K L 	 E % � � � N E
'

Consequently the following explicit expressions for the
CRB for the parameter DOA alone are easily derived:O Q R � � � � 	 ) � � � 


� T 
U �
� ��

� � � V T 


 � � � 	 � � V (1)O Q R 1 � � � 	 ) � � � 


� T 
U �
� ��

� � � VT 
 � 	 
 � � � � � 	 4 � �

 � 	 � � � � � � 	 4 � � � 	 
 � � � � �� 	 4 � � V (2)

where U � is the purely geometrical factor � � ' � � W Y# � � ' � .
In the absence of phase offset or after correcting it (i.e.

parameter * � known), these CRB’s for ) � becomeO Q R [ ]� � � � 	 ) � � � 

� T 


� � � ' � � �
� ��

� � � V T 


 � � � 	 � � VO Q R [ ]1 � � � 	 ) � � � 


� T 

� � � ' � � �

� ��
� � � V�a 



 � 	 
 � 4� " # % � # ' � " �* # ' � * �
� � � 	 4 � � . b/ '

Because the BPSK [resp. QPSK] modulation is non-
circular [resp. circular] complex to the second-order, it
makes sense to compare the stochastic CRB’s (1) and (2)
to the CRB’s associated with respectively non-circular1

(NCG) [3] or circular (CG) complex Gaussian distribution
that can be considered as upper bounds on the true stochas-
tic CRB’s (see e.g., [2, p. 293]). More precisely, after recall-
ing these CRB’s under Gaussian distributions for the conve-
nience of the readerO Q R c [ d 	 ) � � � 


� T 
U �
� � ��

� ��
� 


� �
� ��

� � � � VO Q R [ d 	 ) � � � 
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U �

� � ��
� ��

� 

�

� ��
� � � � V �

we haveO Q R � � � � 	 ) � �O Q R c [ d 	 ) � � � 

	 
 � � � 	 � � � 	 
 � �

� 4 �O Q R 1 � � � 	 ) � �O Q R [ d 	 ) � � �

 � 	 
 � � � � � 	 4 � �

	 
 � 	 � � � � � � 	 4 �
� � 	 
 � � � � �� 	 4 � � � 	 
 � �4 � '

We note that these ratios depend on � � � !� � � � �� �� only and tend
to 1 when � tends to e . However this dependence in � is
not monotone as it is numerically shown in the next section.

1Because f h j k l m n f p j k l p for the BPSK modulation, we consider
the non-circular complex Gaussian distribution associated with f h j k l m nf p j k l p n t .
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4. NUMERICAL EXAMPLES

The purpose of this section is to illustrate the results of sec-
tion 3 and to extend them to the case of two independent
BPSK distributed sources. We consider throughout this sec-
tion, one or two independent sources impinging on a uni-
form linear array of

�
sensors spaced a half-wavelength

apart for which � � � � � � � 	 � � � � � � � � 	 � � � � � � � � �
.

4.1. Single source case

The first experiment illustrates the results of section 3.
Fig.1 shows the ratios

� � � 	 �  � � � � �� � � � � � � � � � and
� � � � �  � � � � �� � � � � � � � � as

a function of � � � �� � � ��� � � . We see from that fig-
ure that the CRB’s under the non-circular [resp. cir-
cular] complex Gaussian distribution are tight upper
bounds on the CRB’s under the BPSK [resp. QPSK]
distribution at very low and very large SNR’s only.
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Fig.1 Ratios � � � � � � � � �	 � ! # 	 �  � $ & � (� ! # � � � $ & � ( and � � � � � � � � �	 � ! # � �  � $ & � (� ! # � � $ & � (
as a function of / � � �	 1 3 ��3 �� .

4.2. Two sources case

We consider now two independent BPSK distributed
sources. Because the PDF of � � is a mixture of 4 Gaus-
sian PDF’s, the associated stochastic CRB appears to be
prohibitive to compute. Consequently we use a numerical
approximation derived from the strong low of large num-
bers, i.e. �  � � � � � � � � � � � � � 5 � � �6 8 � � 9 � � � 9 � �
with

�! � � 6 � � � " � : < =� � > �
�! �

� �# � % � �
? : @ ( � � � ) + �? � � � �

? : @ ( � � � ) + �? �
"

�
(3)

where ( � � � ) + � � �. / � 0 � �1 �#A % � � � 3 5 6 8 C D E 3 �9 � �

with F A � � �� � 0 � G A � � � 	 : � � 0 � G A � � � 	 : � � �
where � G � � � � G � � � � � � � � � � � � , � G � � � � G � � � � � � � � � = � � ,� G H � � � G H � � � � � = � � � � � , � G � � � � G � � � � � � = � � = � � and where+ � � �� � 0 1 � 0 � � > � � � � � 0 � � > � � � � � �

and J � � �� � � � � � � � . At

high SNR’s (more precisely for
� � � �� �� K � and

� � ��� � � K � )
an explicit expression of the FIM can be derived by condi-
tioning the derivative L M N P � Q 6 R S �L � � , T � � � � � � � U w.r.t. the
different couples � @ � � � � @ � � � � � � G " � � � G " � � � " % � � C C C � � of sym-
bols. The following expression is proved in [6]:

� � � � �� � !
VW � �� �� X � X �

X � � �
X � � �

YZ
(4)

with � � �
VW � � � ��� � � � � ��  ! "� ! ��  � � �� � ��  ! "� ! ��  � � � � � �� $ ! �� $ �� � �

YZ
, T � � � E .

We clearly see that the entries correponding to sources 1
and 2 are decoupled. Consequently, for large SNR’s and
independent sources, the CRB for the DOA of one source is
independent of the parameters of the other source and

�  � � � � � � � � � � � � � �!
VW �[ � � ��� �� \\ �[ �

� � �� ��

YZ
�

Furthermore, the CRB’s
�  � � � � � � � � � and

�  � � (� � � � � � � �
for each DOA are those of the single source case. We note
that this property is quite different from the behavior of the
CRB under the Gaussian distribution and the deterministic
CRB, for which the CRB for the DOA of one source depends
on the DOA of the other source. More precisely, it is proved
[1, result R9] that these two CRB’s tend to the same limit as
all SNR’s increase. For independent sources, they are given
by

�  � � * � � � � � � � � �!
VW �] � � � �� � � \\ �] �

� ��� ��

YZ
with ^ � � � �� E + F � �� F � � ` � � � � � � � � , , T � � � E , where` � � � � � � � � � � ��� � - � �� H � � - � = - � �� H � H � � - � � � E a � � H� � �� � HH � � � � � �� H � H � � �� � � - � H � � � - � �

The second experiment considers two independent and
equipowered BPSK distributed sources. Fig.2 compares�  � � � � � � � � � given by (3) with the CRB under the non-
circular complex Gaussian distribution. And to be fair,
this comparison must be done under the same a priori that
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the two sources are independent. For that reason, we use
the expression of the CRB obtained in [4] which can take
this a priori information into account. Fig.2 exhibits the
ratio

� � � � � � � 	 � � 

� � �  � � 	 � � 
 as a function of the DOA separation

� �
� � � for two values of the circularity phase separation

� � � � 	
 � �
� � � . This figure shows, that contrary to the sin-

gle source case, the CRB under the non-circular complex
Gaussian distribution is a very loose upper bound on the
CRB under the BPSK distribution except for large values
of the DOA and phase separation. Consequently, maximum
likelihood (ML) solutions such as the EM approaches [5]
outperform the traditional ML estimator under the Gaus-
sian distribution specifically for small DOA and phase sep-
aration.
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Fig.2 Ratio � � � � � � � � �� � � � � � � �  " � $
� � �  � �  " � $ as a function of the DOA separa-

tion for different values of the circularity phase separation � � for � � �
and � 	 � � � � � � .

Fig.3 exhibits

 �  � � � � � � �  as a function of

the DOA separation for two SNR’s. We see that
contrary to


 �  � � � � � �  , 
 �  � � � � � � �  does
not increase significantly when decreasing the
DOA separation. This explains the behavior of

�
� � � �  � � 	
 � � � � � � � 	 � � 


� � �  � � 	 � � 
 for low DOA separations.
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Fig.3 � � � � � � � � � � � as a function of the DOA separation for � � �
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Finally, Fig.4 exhibits the domain of validity of the
high SNR approximation (4). We see from this figure that
this domain depends not only on

�
and SNR, but also

on the DOA separation, e.g. for
� 
 " , the thresh-

old is about 4dB for
� � 
 ' � � � � and 8dB for

� � 

' � '

$ � � . The larger the DOA separation is or the larger
�

is, the larger the domain of validity of the approximation is.
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Fig.4 Approximate and exact value of � � � � � � � � � � � as a function of
the SNR for different values of the DOA separation.

5. CONCLUSION

In this paper, we have proved that for a single source,
the CRB’s under the non-circular [resp. circular] complex
Gaussian distribution are tight upper bounds on the CRB’s
under the BPSK [resp. QPSK] distribution at very low and
very large SNR’s only. For two independent BPSK sources,
the CRB under the non-circular Gaussian distribution is a
very loose upper bound on the CRB under the BPSK dis-
tribution. And the difference between these CRB’s is more
prominent for small DOA and phase separation. Furthe-
more for high SNR’s, the CRB for the DOA of one source
is independent of the parameters of the other source.
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