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ABSTRACT

Time-reversal imaging (TRI) is analogous to matched-field
processing, although TRI is typically very wideband and is
capable of performing target classification (in addition to
localization). In this paper we apply the time-reversal technique
to locate man-made cylindrical targets moving in a shallow
ocean channel at long range, as well as to classify them from
natural false targets like a school of fish. We present imaging
and classification on simulated scattering data, for both target
classes. In addition to the imaging, we explore extraction of
features from the time-reversal data, with these applied to
subsequent target classification. Time-reversal implementation
requires a fast forward model, with that implemented here by a
normal-mode model. In this paper, we present the underlying
theory of TRI, feature extraction and target classification via a
relevance vector machine (RVM).

1. INTRODUCTION

Imaging and classification of underwater objects in a shallow
ocean channel has generated significant interest in the scientific
community for several years. The problem is complicated due to
the multipath phenomena occurring through reflections from the
ocean surface and the bottom. The random fluctuations of the sea
surface and the complicated bathymetry of the ocean floor make
the modeling of the acoustic waves in a realistic ocean channel
very difficult. The time reversal mirror [1] technique has been
shown in both acoustic and ultrasonic imaging to be very
effective and robust in compensating for the aberrations caused
by inhomogeneities in the propagation medium, multipath and
imperfections in the transceiver positions. Jackson and Dowling
[2] have established the theoretical understanding of the time
reversal technique applied to underwater imaging. Time-reversal
imaging may be perceived as an active matched-field processing
scheme where the channel itself acts as a matched filter, thus
helping to identify the target scattering centers that reside within
the channel. The time-reversal image is subjected to feature
extraction with which we develop a target classification
algorithm based on a non-linear classifier called the relevance
vector machine (RVM) [3].

The paper is organized as follows: In Sec. 2 we discuss the
underlying time reversal theory in an acoustic channel. In Sec. 3
we formulate the feature extraction and briefly explain the RVM
classifier. Example results are presented in Sec. 4, followed by
conclusions in Sec. 5.

2. TIME-REVERSAL THEORY

The phenomenon of time reversal has been studied by several
scientists [4],[5] in both a real ocean environment and simulated
acoustic medium. Previous researchers [2],[6] have already
presented the physics of time reversal; hence, we briefly describe
the phenomena here and concentrate on the specifics of our
problem. It has been shown theoretically that if a source is
completely surrounded by an arbitrary closed surface and the
signal transmitted from the source is recorded at all points on the
surface, then one would achieve perfect convergence at the
source location by time reversing the recorded signal and
sending it back into the closed cavity [2]. It is generally deemed
impossible to achieve time reversal in most real-life situations,
due to the physical limitation of recording at an infinite number
of points on the closed surface. However, in an acoustic
waveguide, one may achieve near-optimal performance by
spanning the entire channel by an array of transceivers, with
maximum inter-element distance of /2λ , where λ corresponds
to the minimum wavelength of the transmitted signal. Assuming
that our experimental scenario satisfies the requirements, the
mathematical understanding of our problem is as follows.

Suppose, the signal transmitted from the source located
at r′ is characterized by ( )S ω (frequency-domain representa-
tion). The backscattered signal received by the mth receiver
located at rmr is given by

( ) ( ) ( ) ( ) ( ) (1)R , S G , , G , ,rm n sn rm snr r r r rω ω ω ω ω′= Γ

where nΓ represents the reflectivity of the nth scattering center,

( , , )G snr r'ω represents the wave propagation from the source to

the scattering center and ( , , )G snr r'ω represents the propagation

from the scattering center to the mth receiver. Since launching the
time-reversed signal into the waveguide is equivalent to phase
conjugation in the frequency domain, the phase-conjugated
signal observed after propagating from rmr to point r is

expressed as
( , ) * ( , ) ( , , ) (2)TRS R Grm rmr r r rω ω ω=

Due to spatial reciprocity, ( , , ) ( , , )G Grm sn sn rmr r r rω ω= .

Therefore, we obtain constructive interference at snr r= . The

time-reversed signal received at snr r= is approximately the

reflection coefficient at snr convolved with the incident pulse and

transmission from the source to snr . At this point, we have
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localized the scatterer at snr , but it has the wrong time

dependence due to the effects of the initial propagation through
the channel. To eliminate the effects of this propagation, we
again run the forward model to compute ( , , )G snr r'ω , which

finally yields the time-dependent reflection coefficient,
convolved with the incident pulse, at the point of the scattering
center as

( , ) * ( , ) ( , , ) ( , ', ) (3)TRM rmS R G Grmr r r r r rω ω ω ω=
which corresponds to the backpropagation of the received signal
from rmr to the source via target. We perform the same process

for all the receivers individually and add them together, which
corresponds to phase conjugation for a single frequency ω as
follows.

1

( , ) *( , ) ( , , ) ( , ', ) (4)array
TRM rmS R G G

MN

rm
rm

r r r r r rω ω ω ω
=

= ∑

where NM is the total number of receivers. In this way, we may
achieve four-dimensional imaging of the scattering centers on a
target, localizing the scattering center in 3D space, as well as the
associated time dependence. Upon performing numerical time-
reversal imaging, we obtain a time-domain signal at each point
in 3D space. The time-dependent images, one for each receiver,
add constructively at the location of the target and also
identifying the time at which each scattering center has fired. We
extract features from each time-reversed response at the location
of target(s), with classification performed via a relevance vector
machine (RVM) [3]. It is to be noted that the time-dependent
TRM signal at the target location is relatively independent of
target-sensor distance and numerical TRM is relatively
insensitive to mismatch between numerical and actual channel.

It is observed that TRM is capable of locating the scattering
centers through super-resolution [6] for man-made targets
whereas we achieve very modest focusing for the school of fish.
We utilize this phenomenon to extract suitable features for
subsequent target classification. The phenomenon can be
explained as follows.

Based on the waveguide propagation model, the acoustic
pressure generated by the point source at position (x,y,z) can be
represented as

( ) ( )4
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where M is the number of modes excited, am is the excitation
amplitude of the mth mode and 2

2
m

m
k k
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π
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corresponding wavenumber. Via first-order saddle-point
asymptotic, (5) may be rewritten as
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ma and mφ are respectively the time and distance dependent

amplitude and phase of the mth mode and cm

m c

h

πω = is the

corresponding cutoff frequency.

It is evident from the above set of equations that
independent of range, the time-dependent frequency settles down
to the modal cutoff frequencies at late times (large t). A fish
school is a distributed set of random scatterers, all producing the
same late-time response with random phase/amplitude.
Therefore, the late-time response of a fish school tends to
destructively interfere whereas man-made target has a discrete
and finite set of distributed scattering centers. Also, the
scattering centers in a man-made target are statistically correlated
unlike in the fish school. Hence, we observe a strong late-time
response for man-made targets, this subsequently resulting in
significant focusing (waveform tightening) via TRM.

3. FEATURE EXTRACTION AND CLASSIFIER DESIGN

The sensor is assumed fixed and the target moves with respect to
it. A time-reversal waveform is computed for each target-sensor
orientation, as a function of range for a fixed depth. This yields a
2D aspect-range image, from which features are extracted. We
extract a few simple features for every target location (each ping,
corresponding to a particular target-sensor orientation). One
feature used by our classifier is the ratio of the temporal (range)
extent of the backscattered signal before and after TRM. We
define the extent as the temporal width beyond which power of
the signal is less than 30% of the peak power. The second feature
utilized here incorporates the temporal extent and the energy of
the signal within the temporal extent. The feature being used is
the percentage energy of the whole signal within the temporal
extent defined as above. A series of feature vectors is computed,
one for each target-sensor orientation. At this point each feature
vector is treated independently, although one might enhance the
classification by combining multiple observation via a hidden
Markov model (HMM) [9].

Given a feature vector for each target position/orientation
(corresponding to each ping from the source to the moving
target), we have a set of feature vectors for each target and
natural clutter, with which we develop a single non-linear binary
classifier based on the relevance vector machine (RVM) [3]. The
classifier is of the form

0
1

( , ) ( , ) (7)
N

n n
n

f v w w g v v w
=

= +∑

where ( , )ng v v is a kernel that quantifies the similarity between

the feature vectors v and vn. The weights, wn, signify the
importance of the feature vectors vn and w0 signifies the bias.
The observation corresponding to v is deemed target or
otherwise depending on the sign of the function f(v,w). The
relevance vector machine optimally chooses the “relevant”
vectors vn (those with non-zero weights) and the corresponding
weights wn, based on the labeled training data. The expression in
(7) is computed for each ping (target-sensor orientation), and a
classification (target vs. clutter) is made for each, one at a time.

4. EXAMPLE RESULTS

The data used in this paper were generated by Naval Research
Laboratory (NRL), Washington, D.C. Our objective is to use the
time-reversal technique to image and classify man-made
cylindrical targets moving in a shallow water channel from a
school of fish. The channel depth is 150 meters and the entire
channel is vertically spanned by an array of 75 equispaced

where
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receivers as shown in Fig. 1. The isotropic source is located at a
depth of 74 meters and the range of illumination of the system is
approximately 20 km. The bandwidth of the sensor system is
from DC to 1KHz. Fig. 2a shows the top view of the linear target
tracks at four different ranges (1, 5, 10 and 15 km from the
vertical receiver array located at the center) and two turning
tracks are shown in Fig. 2b. The tracks followed by the school of
mackerel and herring are shown in Fig. 2c and 2d, respectively.
In this exercise, we have in-channel responses from two man-
made targets (termed as “small” and “medium” targets). The
man-made targets move through the channel at a fixed speed of 4
knots while the source pings the target at every 3 minutes. Fig.
3a shows the in-channel target-response before TRM for the
entire set of pings. Fig. 3b shows the equivalent plot after TRM
processing. In Fig. 4, we have taken a vertical cut on the whole
image and plotted the target response at broadside as a function
of target-sensor distance. Comparing Figs. 4a with 4b, it is
evident that TRM results in better focusing of the target response
by compensating for the multipaths.

Fig. 5 shows the comparison between the estimated target
locations as derived from the time-reversed target response (by
locating the position of the time-reversed peak) with respect to
the ground truth. It demonstrates that the TRM is capable of
locating moving targets in a shallow ocean channel. In Fig. 6, we
show the target imaging by synthetic aperture sonar (SAS)
processing on the time-reversal image. Specifically, the range-
dependent TRM waveforms for multiple target-sensor
orientations are used to constitute a synthetic aperture, with
which a composite SAS image is formed. One can identify the
sharply focused scattering centers. Fig. 7a and 7b shows the
equivalent TRM focusing and TRM+SAS imaging for a school
of mackerel. Lack of focusing on scattering centers is evident.
Figs. 8a and 8b shows the response from a herring school before
and after TRM (for a single ping) which demonstrates the lack of
perceivable focusing through time reversal.

Given the time-reversed target responses, we perform
feature extraction and design a RVM-based binary classifier.
Fig. 9 plots the classifier performance based on receiver
operating characteristics (ROC) for both raw and time-reversed
data. We observe that at a 10% false alarm rate time reversal
increases the classification performance from 10% to 80%. Note
that these results used the original aspect-dependent TRM
waveforms, without performing subsequent SAS processing.

5. CONCLUSIONS

Time-reversal imaging and classification is addressed in a
shallow ocean channel. It is demonstrated that time reversal is
capable of compensating for multipath in an acoustic waveguide
and, for the examples considered, it increase the target
classification performance significantly (even with simple
features). We hope to use more physics-based features and
combine multiple target responses from different orientations to
enhance the classification performance even further.
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Fig. 2a Fig. 2b

Fig. 2a Fig. 2b

Fig. 2c Fig. 2d

Fig. 2a Four linear tracks for man-made cylindrical targets
Fig. 2b Two turning tracks each man-made target.
Fig. 2c Four sets of tracks for mackerel school.
Fig. 2d Four set of tracks for herring school.

targetReceiver array

source

Fig. 1 Channel Model
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Fig. 3a Fig. 3b

Fig. 3a In-channel response (before time-reversal) for “small”
target at different positions along the linear track. The vertical
axis represents the target-sensor distance in km and the
horizontal axis is cross range in km.
Fig. 3b “Small” target response after time-reversal. Both axis
are in km.

Fig. 4a Fig. 4b

Fig. 4a In-channel response from “small” target when sensor
array is at broadside and 15 km away from the target.
Fig. 4b Time-reversed response from “small” target when
sensor array is at broadside and 15 km away from the target.

Fig. 5 Comparison between the estimated target location from
the time-reversed response and the ground truth along the track.

Fig. 6 “Small” target response after synthetic aperture sonar
focusing on the time-reversed image. The vertical axis is target-
sensor distance in km.

Fig. 7a Fig. 7b

Fig. 7a Time-reversed response from mackerel school as it
follows a semi-linear track. The vertical axis represents target-
sensor distance in km.
Fig. 7b SAS processing on time-reversed image leads to
blurring unlike sharp focusing for man-made targets.

Fig. 8a Fig. 8b

Fig. 8a In-channel herring response before TRM as a function of
target-sensor distance. Horizontal axis for both plots are in km.
Fig. 8b Herring response after time reversal imaging.

Pf

Fig. 9 Classification results based on target response before and
after TRM. A single RVM classifier is used to differentiate all
targets (“small” and “medium”) at all location/orientations from
fish schools.
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