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ABSTRACT

The kernel matching pursuit (KMP) algorithm is re-formulated
in the framework of the theory of optimal experiments, using a
weighted sum of squared errors as the loss function, and it is
extended to the case of M-ary target classification and kernel
optimization. The M-ary KMP classifier is applied to multi-
aspect classification of moving targets based on high-range
resolution (HRR) radar signatures, for which the target-sensor
orientations are assumed approximately known. A multi-aspect
processing method is presented based on the use of the estimates
of target-sensor orientation angles. The KMP classification
results for ten MSTAR targets are presented, with a comparison
to corresponding results using the relevance vector machine
(RVM).

1. INTRODUCTION

Matching pursuits (MP) is a well-known technique for
representing a signal as a linear expansion of basis functions that
are selected from a potentially redundant dictionary [1]. Based
on MP, the kernel matching pursuits (KMP) algorithm was
introduced in [2], wherein MP was applied to kernel basis
functions and extended to use the non-squared-error loss
function. KMP with a squared-error loss function is closely
related to the orthogonal least square (OLS) algorithm [3-4]. In
this paper we re-formulate KMP in the framework of the theory
of optimal experiments [5] using a weighted sum of squared
errors as the loss function, and extend it to the case of M-ary
target classification and kernel optimization. The M-ary KMP
classifier is applied to multi-aspect classification of moving
targets using high-range resolution (HRR) radar signatures, for
which the target-sensor orientations are assumed approximately
known, based on, for example, the target’s Doppler signatures. A
multi-aspect processing method is presented based on the use of
the estimates of target-sensor orientation angles. The KMP
classification results for ten MSTAR targets are presented, with
a comparison to the corresponding results using the relevance
vector machine (RVM) [6].

2. AN M-ARY KMP CLASSIFIER

2.1 The KMP

2.1.1 Estimation of the weights
The KMP implements a set of functions of the form
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are the weights that combine the basis functions in the
summation, and the subscript n is used to denote the number of
basis functions being used.

Assume we are given a training set N
iii y 1},{ =x of size N,

where xi is the i-th input and yi its expected output, the weighted
sum of squared errors between the expected output and the KMP
output given in (1) is [5]
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where βi is a weight accounting for the importance of the i-th
training sample ),( ii yx . For example, 1/βi may represent the

variance of yi given xi, i.e., 1/βi=var(yi|xi). In addition, if one
knows a priori that xi is better representative of the system being
modeled, this can be accounted for by assigning a larger βi. An
example of the use of β is given in Sec. 3. The unknowns in (4)
are the centers ic of the basis functions in φφφφn, and the weights in

nw . The determination of ic will be addressed separately in

Sec. 2.1.2. At the moment we suppose ic and consequently nφφφφ

are known and aim at solving for nw . Then the value of nw
that minimizes (4) is found to be [5]
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Denote by E(.) and var(.) the expectation and variance,
respectively. It can be shown that when E(yi|xi)=fn(xi)= )( in

T
n xw φφφφ

and var(yi|xi)=1/βi, (5) is the best linear unbiased estimate
(BLUE) of nw , given φφφφn(xi) [5]. Following the convention in

[5], we refer to Mn as the Fisher information matrix, assuming
that we consider only linear estimates of wn, and φφφφn(xi) for
i=1,2,…,N are given.

2.1.2 Sequential Selection of Basis Functions
An nth order KMP employs n basis functions. According to the
definition in (1), the (n+1)-th order KMP is inductively written
as
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where
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with ),((.) 11 ⋅= ++ nn K cφ a new basis function centered at 1+nc .

The weighted sum of squared errors of the (n+1)-th order KMP
is
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Assuming the basis functions in 1+nφφφφ are all known, then

according to (5)
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minimizes (9), where the Fisher information matrix 1+nM is

given as
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It can be shown [7] that 1+nw is related to nw as
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and 1+ne is related to ne as
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with ),( 1,1 inin K xc ++ =φ .

It can be shown that 1−b is a diagonal element of 1
1

−
+nM [7].

With sufficient independent training data, we can always make

1+nM positive definite, as can be seen from (11). Then 1
1

−
+nM is

also positive definite and it holds 01 >−b , and therefore
),( 1+nKe cδ is non-negative. Then according to (13), nn ee <+1 ,

which means appending a new basis function to the KMP
generally leads to decrease of the representation error.

As ),( 1+nKe cδ is dependent on the center 1+nc of the new

basis function, we obtain different values of ),( 1+nKe cδ by

selecting different 1+nc . If we confine 1+nc to be selected from

the training data, we then can conduct a “greedy” search in the
training set but with the previously selected data excluded to
avoid repetition, and select the datum that maximizes (14).
Formally, we have
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After 1+nc is determined, we update the weights using (12) and

the Fisher information matrix using (11) and (8).

2.1.3 Kernel Optimization
From (14), ),( 1+nKe cδ depends on the functional form of the

kernel ),( ⋅⋅K as well as on 1+nc . This allows us to optimize the

kernel to gain further error reduction. A simple approach to take
is to first conduct a “greedy” search of 1+nc in the training set,

for a fixed kernel, and then fix 1+nc and optimize the parameters

of the kernel. For radial basis function (RBF) kernels, the only

parameter other than 1+nc is the kernel width, thus optimization

of RBF kernels with 1+nc fixed is a one-dimensional search for

the kernel width. It is also possible to optimize 1+nc and the

kernel width simultaneously, but then 1+nc is treated as a free

parameter and no longer confined to the training set. Another
possibility is optimization over kernels of different functional
forms, which offers greater diversity of the basis functions
available to the KMP.

2.2 An M-ary KMP Classifier

For the M-class classification problem, one builds M models
defined in (1). Suppose the training samples are N

iii y 1},{ =x where

ix is an observed datum and },...,2,1{ Myi ∈ is its target label.

One re-labels the training data for each of the M models in the
following way. Let the labels for the m-th model be denoted as

)(m
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The learning is based on simultaneous minimization of the
weighted sum of squared errors for the M models. Thus the cost
function for the M-ary KMP classifier is
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Note in (18) that the M models have their own weights but share
the same basis functions. As in the case of the KMP, we first
solve for the weights assuming the basis functions (including
kernel parameters) are fixed. This is done by taking derivative of
(18) with respect to )(m

nw , setting the result to zero, and solving

for )(m
nw

i
m

iinn
m

n y }{ )(
,

1)( φφφφ−= Mw (19)

where nM is the same as in (6). Following the same methods

that were used to derive (12)-(13), we obtain
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and
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and b is the same as in (15). The learning of KMP classifiers
proceeds in a similar generative way as described Sec. 2.1. At
the n-th iteration, we first select 1+nc from the training data set

(with the previously selected data excluded) that maximizes (22),
to locate the new basis function, and then use (20) to update the
weights. We can similarly optimize the kernels in the KMP M-
ary classifier, using (22) as the objective function to optimize
kernel parameters or select different kernel functional forms.

3. MULTI-ASPECT HRR TARGET CLASSIFICATION
WITH THE M-ARY KMP CLASSIFIERS
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We now consider high-range-resolution (HRR) radar
classification of moving targets, for which the target’s
orientation relative to the sensor may be known approximately
from the Doppler signatures. Two basic properties are known for
the HRR waveforms [8]. First, they are not aligned temporally to
one another, making inner product an inappropriate similarity
measure. Secondly, the waveforms vary significantly, implying
that the HRR waveforms are a strong function of the viewing
angle. We assume a fixed depression angle and therefore
variation is in the azimuthal angle φ only. To simplify the
formulae, the 2π-modulus property of φ is ignored in the
following, with the results readily modified to account for this.

To deal with the angular dependence of HRR waveforms on
φ, the concept of target “states” was introduced in [9], where a
state was defined as a contiguous range of angles for which the
scattering physics is approximately stationary. Assume that a
target is characterized by L states. The i-th state is specified by

qi(φ) )|Pr(
.

φi

Def

s= , which is the probability that the waveform x is

in state si given the exact azimuth φ of x, where Pr is an
abbreviation of probability. We assume qi(φ) is Gaussian with
mean µi and variance 2

iη , for i=1,…,L. In reality, the exact

azimuth φ cannot be known, and only an estimate φ̂ of φ can be

obtained. Assume the error φφ ˆ−=e is governed by a zero-

mean Gaussian pe(φ) with variance σ2. Using the definitions of
qi(φ) and pe(φ) and their Gaussianity assumptions, we have
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Moreover, )ˆ|Pr( φis is also a Gaussian distribution in φ̂ with

mean µi and variance 2
iη +σ2. The )ˆ|Pr( φis defines the

probability that waveform x is in state si given the azimuth

estimate φ̂ of x.
The angular dependence aforementioned can be employed

to construct sequences of HRR waveforms, to enhance the
classification performance. Let xj be the jth HRR waveform in a

length-J sequence, and let the estimated azimuth of xj be jφ̂ . Our

objective is to perform target classification based on the
sequence }{ 21 J,...,, xxx and the associated azimuth estimates

}ˆˆˆ{ 21 J,...,, φφφ .

Assume there are a total of M targets in consideration. The
probability of target Tm given the sequence }{ 21 J,...,, xxx and the

associated azimuth estimates }ˆˆˆ{ 21 J,...,, φφφ is represented as
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where )ˆ|Pr( jis φ are the same as in (23) expect that they are

normalized such that 1)ˆPr( =L

i jis φ .

We assume the definitions of qi(φ), i=1,…,L, and pe(φ) are
constant across all the M targets in consideration. Given that we
are in a particular state si and that xj is observed, we implement

)Pr( jim ,sT x using either the RVM [6] or the M-ary KMP

classifier. For state si and target Tm, the RVM and KMP outputs
both take the form
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where iN
ll 1}{ =c are the training examples of all M targets in state

si. As noted in (23), state si is defined in a “soft” way by a

probability distribution )ˆ|Pr( φis in φ̂ . To obtain iN
ll 1}{ =c ,

)ˆ|Pr( φis is truncated to produce “hard” boundaries between

states. In (25) the RVM and the KMP are distinguished in the
following way: the RVM starts with non-zero weights on all Ni

training examples, and then iteratively sets most of the weights
to zero, using a sparseness prior on the weights. The KMP starts
with all Ni weights zero (no basis functions) and iteratively and
sequentially adds basis functions.

Though “hard” state boundaries are required by the RVM,

they are not necessary for the KMP, as for the KMP, )ˆ|Pr( φis

in (23) afford the weights β in (4) and (18) and therefore the
overlap between states can be handled using importance
weighting. While this may yield more accurate classification, it
is more time consuming as it takes more training examples for
each state. We did not implement it in our present results due to
the computational cost.

The RVM introduces a link function, which is used in both
the training and testing phase. In the testing phase the RVM
computes the probability of associating x with state si of target
Tm as [6]

1)( ))](exp(1[),Pr( −−+= xx m
iim fsT (26)

For the RVM design, the expression in (26) is used to represent

)Pr( jim ,sT x in (24). The KMP does not employ a link function

in its training phase. However, in the testing phase a monotonic
nonlinear transform is employed in the KMP to map its output to
within the range of probability [0,1]. Based on the re-labeling
scheme in (17), we here let the mapping take the form

1)( )]1)(2exp(1[)Pr( −−+= xx m
iim f,sT . In both the RVM and the

KMP, )Pr( x,sT im is normalized such that 1)Pr(
1

=
=

L

i im ,sT x .

An advantage of the RVM and the KMP is that they are
applicable to arbitrary kernels or basis functions. We exploit this
property in this HRR classification problem. Let )( ji ,C xx be

the maximum correlation between HRR waveforms xi and xj,
with the maximization performed across all possible temporal
shifts between these waveforms. We define the kernel
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which is of the form of the radial basis function [3] except that
the maximum correlation between xi and xj is used in place of the
inner product. Note if the HRR waveforms are normalized in
advance such that 1)( =xx,C , computational benefits are gained.

The .),(.K in (27) does not appear to be a Mercer kernel,
making it unsuitable for the support vector machine (SVM).

4. RESULTS

The multi-aspect processing approach in Sec. 3 has been
developed for moving targets, for which the approximate
azimuth estimates are available from the Doppler information.
The assumption of available estimates for the target pose is most
appropriate for sensing airborne targets, for which Doppler
information is readily available. For presentation purposes, we
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present example results using the publicly available MSTAR
data set [10]. The MSTAR data was originally in the form of
synthetic-aperture radar (SAR) imagery, and it has recently been
converted to HRR time-domain waveforms, as a function of
azimuth angles [10]. In this data set, the training and testing data
are distinct.

In the training phase, L=120 uniform target states were
considered over the 360o azimuthal range. Accordingly the

)ˆ|Pr( φis in (23) is a Gaussian with mean µi=1.5°+(i−1)×3° and

variance 2
iη +σ2=2.25°. The small variance used here is due to

the fact that the azimuths furnished in the MSTAR dataset are
very accurate (therefore σ2 is small) and that the HRR
waveforms vary fast with azimuth for the small wavelength here
(3 cm) relative to the targets’ dimensions (therefore 2

iη with

i=1,…,L are small). In training the RVM or KMP of the form in

(25), )ˆ|Pr( φis is truncated to produce uniform states of 3o

azimuthal support. The data were sampled in 0.1° increments
azimuthally, and therefore for a given target each state was
composed of 30 training examples. Across the M=10 targets the
total number of training examples for a given state was 300.

We train an M-ary classifier for each of the 120 target states,
based on the re-labeling in (17), and respectively using the RVM
an KMP. The γ in (27) is initially chosen as 0.7. For the KMP γ
is optimized on each iteration when learning, in the sense
discussed in Sec. 2.1.3, while it is kept constant for the RVM.
Recall that the RVM requires inversion of matrices of the size of
the training set, and therefore the computation is often intensive.
In the present example, the RVM required a total training time of
3.5 hours on a Pentium IV PC with 1.5 GHz clock speed. By
comparison, the KMP training avoids large matrix inversions,
and therefore a total training time of only 30 minutes is required
on the same computer used for the RVM.

In Tables 1 and 2 we present the confusion matrices for the
ten MSTAR targets, using the algorithms presented above. In
Table 1 the confusion matrix is presented when )Pr( kim ,sT x is

modeled via the RVM. This table was generated by considering
all possible 3° testing sequences, corresponding to 30 HRR
waveforms collected in contiguous 0.1° increments. In this
example 52 % of the training data were used as relevant vectors.
The corresponding KMP results are presented in Table 2, for
which 22% of the training data were used as bases. We observe
that the two approaches yield comparable and encouraging
performances, with an average classification rate of 96.6% for
the RVM and 97.6% for the KMP.

5. CONCLUSIONS

KMP has been re-formulated in the framework of the theory of
optimal experiments [5] and extended to M-ary classification and
kernel optimization, using a weighted sum of squared errors as
the loss function. The M-ary KMP classifier has been used as a
key component in a multi-aspect classification scheme, to handle
the data of M targets in a same state. The results on ten MSTAR
targets show that at a comparable classification rate, the KMP
achieves greater sparsity and shorter training time than the
RVM.
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Table 1. Confusion matrix of RVM, 52% of the training data
used as relevant vectors. Each test sequence spans 3° in azimuth.
The (i,j) element of the matrix is the rate in percentage that the
test sequences of target iT are declared as from target jT .

T72 BTR70 BMP2 2S1 ZSU234 BTR60 BRDM2 D7 T62 ZIL131

T72
BTR70
BMP2
2S1
ZSU234
BTR60
BRDM2
D7
T62
ZIL131

98.29 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00 0.00
0.00 94.04 0.56 0.50 0.00 0.03 2.63 0.00 0.00 0.00
0.00 0.17 98.77 0.39 0.08 0.00 0.42 0.06 0.00 0.11
0.00 0.31 0.98 97.79 0.00 0.20 0.70 0.03 0.00 0.00
1.12 0.28 0.20 0.64 96.25 0.08 0.28 0.00 0.64 0.50
0.00 2.18 0.50 0.00 0.00 95.88 0.81 0.00 0.00 0.00
0.00 0.00 0.22 0.00 0.00 0.00 99.30 0.00 0.00 0.00
0.03 0.00 0.00 0.08 0.00 0.00 0.00 99.30 0.45 0.14
0.92 0.00 0.20 0.92 0.70 0.08 0.06 0.28 95.04 0.42
0.00 1.04 0.76 0.87 2.13 0.42 0.87 0.42 1.54 91.83

average 96.65

Table 2. Confusion matrix of KMP, 22% of the training data
used as kernel centers. Each test sequence spans 3° in azimuth.

T72 BTR70 BMP2 2S1 ZSU234 BTR60 BRDM2 D7 T62 ZIL131

T72
BTR70
BMP2
2S1
ZSU234
BTR60
BRDM2
D7
T62
ZIL131

99.66 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.03 0.25
0.00 94.37 0.42 0.78 0.00 0.67 2.77 0.00 0.00 0.98
0.48 0.06 98.91 0.00 0.00 0.56 0.00 0.00 0.00 0.00
0.53 0.03 0.53 98.18 0.03 0.00 0.70 0.00 0.00 0.00
0.25 0.64 0.11 0.00 96.98 0.42 0.00 0.70 0.81 0.08
0.00 1.65 0.17 0.00 0.00 96.19 0.06 0.03 0.34 1.57
0.00 0.00 0.00 0.42 0.08 0.22 99.27 0.00 0.00 0.00
0.06 0.00 0.00 0.00 0.00 0.00 0.00 99.92 0.03 0.00
0.22 0.03 0.73 0.00 0.25 1.06 0.00 0.00 97.12 0.59
0.00 1.96 0.03 0.14 0.28 0.00 1.65 0.00 0.00 95.94

average 97.65
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