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ABSTRACT

This paper presents a fundamentally new mathematical 

framework based on the group representation theory for the 

modeling and processing of signals in ultrawideband (UWB) 

regime. A group theoretical approach is motivated by the fact 

that in UWB regime, the underlying mathematical structure of 

the inverse scattering is governed by the affine group. In 

particular, received echo can be viewed as the affine Fourier 

transform of the range-Doppler image evaluated at the 

transmitted waveform. Based on group representation theory and 

a novel Wiener filtering method over the affine group, we 

derived a regularized closed form analytical estimate of the 

range-Doppler target reflectivity density in the presence of 

nonstationary noise and clutter in UWB regime. This estimate 

also leads to a method of data fusion to form synthetic UWB 

high resolution images from multiple radars with narrowband 

transmission.  

1. INTRODUCTION 

In radar/sonar imaging, the transmitter emits an electromagnetic 

signal. The signal is reflected off a target and detected by the 

transmitter/receiver as the echo signal. Assuming negligible 

acceleration of the reflector, the echo model from a point 

reflector is given as the delayed and scaled replica of the 

transmitted pulse [1],-[4]:  

e t s f st , (1.1) 

where f  is the transmitted pulse,  is the time delay, and s  is 

the time scale or Doppler stretch. The term s is given as 

s c c , where c  is the speed of the transmitted 

signal and  is the radial velocity of the reflector. This echo 

model is also referred as the “wideband” echo model. When the 

bandwidth of the transmitted signal is narrow as compared to 

main frequency component, the echo model becomes the 

delayed and the Doppler shifted version of the transmitted 

signal, i.e., j te t f t e , known as the narrowband echo 

model. The echo model in (1.1) is more general and 

approximates the narrowband model in the limit [5]. In general, 

the echo model described above is valid for ultrawideband 

(UWB) signals. According to the definition introduced by 

DARPA in 1990, an UWB signal is the one with large relative 

bandwidth, H L H Lf f f f  in the range 0.25 1

where Hf  and Lf  are the highest and lowest frequencies of 

interest. The term “wideband” is typically used for signals with a 

relative bandwidth of 5- 10%. See also Sholtz et al [6]-[9] for 

information theoretic modeling of UWB channels. 

It is often desirable to image a “dense” group of reflectors. 

This means that the target environment is composed of several 

objects, or a physically large object with continuum of reflectors 

and that the reflectors are very close in range-Doppler space. 

This dense group of reflectors is described by a reflectivity 

density function in the range-Doppler space. The received signal 

is modeled as a weighted average [1], [10]-[11] echo signal of 

the continuum of scatters. For UWB signals, the echo model is 

given as 

2

0

1
,W W

t ds
e t T s f d

s ss
, (1.2) 

where ,WT s  is the wideband reflectivity density function 

associated with each time delayed and time scaled version of the 

transmitted signal. Note that the UWB echo model in is in fact 

the affine group Fourier transform of the target reflectivity 

function WT  evaluated at the transmitted pulse f . The 

narrowband echo model is given by 

, j t

N Ne t T f t e d d , (1.3) 

where ,NT  is the narrowband reflectivity density function 

associated with each time delayed and frequency shifted version 

of the transmitted signal. 

The goal in range-Doppler imaging is to estimate ,WT s

and ,NT  given the transmitted and the received signals. 

Typically, the received echo in a radar or sonar system is very 

weak due to clutter and system noise. Therefore, the detection at 

the receiver side is performed by matched filtering 

(estimator/correlator), which amounts to correlating the received 

echo with the transmitted pulse. Estimator/Correlator is an 

optimal filter maximizing the output signal to noise ratio (SNR) 

for a given waveform, and received signal embedded in white 

Gaussian noise [12]. When the wideband echo model described 

in Equation (1.2) inserted into the wideband correlation 

receivers, the resulting output is expressed as an affine group 

convolution integral: 
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, , ,W W W

s b da
C s T a b db

a a a
 (1.4) 

where W  is the wideband auto-ambiguity function and WC  is 

the wideband cross-ambiguity function or the 

estimator/correlator output. Thus, at the output of the 

estimator/correlator, the wideband echo model is expressed as an 

affine group convolution. W W A WC T where A  denotes the 

affine group convolution. On the other hand, for narrowband 

processing, the echo model is expressed as a Heisenberg group

convolution.

The fundamental problem that we will address can be stated 

as follows: How can we recover the UWB target reflectivity 

function WT  in range-Doppler space from the measurements 

y t , t , embedded in nonstationary noise/clutter given a 

priori target and clutter information? 

2. MATHEMATICAL PRELIMINERIES 

2.1. Fourier Analysis on the Affine Group 

Affine group has exactly two nonequivalent, infinite 

dimensional, irreducible, unitary representations. We denote 

them by . Let  act on the Hilbert space H  that consist of 

functions whose Fourier transform are supported on the right 

and left half-line, respectively. Then, the affine Fourier 

transform is given as follows: 

1
,

x b
a b x

aa
 (2.1) 

2

0

, ,
U

f a dadbf a b a b  (2.2) 

, ,f a b tr a b f†  (2.3) 

Note that the linear operator  corresponds to 

2

di
t t

dt
, [13]. The extra operator  in the Affine 

group Fourier inversion formula is due to the non-unimodular 

nature of the affine group. The operator valued Fourier 

transform maps any function f  in 2 ,L G dg  to a family 

f̂  of bounded operators. The collection of Fourier 

transforms f̂  for all Ĝ  is called the spectrum of the 

function f . Note that an important property of Fourier 

transform is that the group convolution is mapped to operator 

multiplication in the Fourier domain, i.e.,  

1 2 2 1Gf f f f ,    (2.4) 

2.2. Wiener Filtering over the Affine Group 

Theorem : Let G  be a separable locally compact group of Type-

I, and x g  and n g , g G , be two zero mean left group 

stationary processes, referred to as signal and noise, 

respectively. Assume that the measurements obey the following 

convolution integral and noise model: 

1

G

y g x h f h g dh n g  and 0E x g n g  (2.5) 

where the filter f  is known and belongs to 2 ,L G dg . Then, 

the optimum linear least squares deconvolution filter optW ,

minimizing the least squares error variance 

2

w w

G

J E g dg

where     

,w

G

g W g h y h dh x g , (2.6) 

is left group invariant and the estimate of the signal is given by 

the following convolution integral 

1ˆ
opt

G

x g y h W h g dh . (2.7) 

The Fourier transform of the optimal filter optW  is given by 

1
ˆ ˆ ˆˆ

opt x x nW S f f S f S† † , Ĝ

  (2.8) 

Here, f̂  is the Fourier transform of the convolution filter f ,

and, f̂ †  denotes the adjoint of the operator f̂ . xS  and nS  are 

operator valued spectral density functions of the signal and 

noise, respectively.  The spectral density function of the least 

square error between the signal and its filtered estimate is given 

as 
ˆˆ

e opt xS I W f S  (2.9) 

where I  denotes the identity operator.  

Proof : [13]-[14]. 

3. TARGET REFLECTIVITY ESTIMATION 

There is a vast literature on wideband signal processing, 

particularly in the context of communications. However, most of 

these studies deal with signals that can be well approximated 

with the narrowband wave propagation model, i.e., relative 

bandwidth of the signals is 10% or less. As mentioned above, the 

echo model in (1.1) is primarily applicable to UWB signals [15]-

[16], [6]-[9]. Signal processing for UWB radar and 

communications is an emerging area of research. For recent 

publications in UWB channel estimation and waveform design, 

see [6]-[9], [17],[18].  

The UWB wave propagation model as described above has 

been studied before (See, [1]-[4],[11], [19]-[20] and references 

therein). In [9] and [31], Naparst and Miller suggested to use the 

Fourier theory of the affine group and proposed a method to 

reconstruct the target reflectivity density function in a 

deterministic setting. In [4], Weiss suggested to use the wavelet 

transform for the image recovery in a deterministic setting. 

However, this approach requires that the target reflectivity 

function to be in the reproducing kernel Hilbert space of the 

transmitted wavelet. In [19]-[20], this approach extended to 

include affine frames. In all these studies, the received signal is 

modeled noise and clutter free, which is not a realistic 

assumption for radar return signals. Furthermore, none of these 

studies provided a regularized inversion for the reconstruction.

Here, we shall introduce our preliminary receiver or image 

reconstruction methods and discuss further research problems. 

The preliminary result can be stated as follows: Adaptive 
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receiver designs (image reconstruction) that can simultaneously 

perform detection and estimation in the presence of 

nonstationary noise, and range-Doppler clutter based on the a 

priori target and clutter information with the following 

properties:

1. Optimal signal-to-clutter ratio in the mean square sense 

given a priori target and clutter information. Thus from 

information theoretic point of view, provides best 

detectability. 

2. Provides a method of data fusion to form UWB high 

resolution images from low resolution multiple radars. 

3. Multiple mathematical representations leading to different 

practical implementations. 

In conventional radar engineering, the detection and 

estimation are performed sequentially. When detecting targets, 

the presence or absence of a target is generally determined by a 

threshold test on the energy of the received signal. Once the 

detection is performed, target echo is filtered using the 

estimator/correlator to extract target track parameters. It is 

straightforward to show that the estimator/correlator is an 

optimal filter that maximizes the signal-to-noise ratio for a given 

waveform in the presence of white Gaussian noise.  

Here, we shall address the following problem, given the 

affine stationary target spectral density function TS  and the 

additive noise/clutter spectral density function nS  in range and 

Doppler, design a receiver filter such that the signal-to-noise 

ratio of the receiver output is maximized. The primary difference 

between this problem and the standard matched filtering 

problem is the effect of the target and clutter spectra (a priori 

information in both range and Doppler) in defining the structure 

of the receiver. Furthermore, we will see that the receiver design 

problem couples naturally with the waveform design problem. 

As a result, the image reconstruction can be customized to 

performe only for those targets that are of interest.  

Observe that the UWB echo model is in fact equal to the 

Affine Fourier transform of the target reflectivity density 

function,
W

T , evaluated at the transmitted pulse f , i.e., 

Equation (1.2) can be alternatively expressed as 

W We t T f t

or

, , , ,W W We t T a b f t T a b f t  (3.1) 

where We  is the received echo and  f f f  are the 

orthogonal components of the transmitted pulse.  

Now, assume that the unknown target reflectivity density 

function is a random variable ,WT a b  on the range-Doppler 

plane contaminated with an additive random noise/clutter 

,N a b  in the rage-Doppler plane. Thus, the model for the 

return signal is given by 

, , ,WD a b T a b N a b , ,a b A

 or

Wy t e t n t   (3.2) 

where 

, ,y t D a b f t , , ,W We t T a b f t ,

, ,n t N a b f t .  (3.3) 

The minimum mean square error filter providing the best 

compromise between the clutter and the target reflectivity 

density function is the Wiener filter over the affine group given 

by 
1

T T N

optW S S S  (3.4) 

where TS  and NS  are the components of the spectral density 

functions of the target WT  and clutter N , respectively. Affine 

Wiener filter can be estimated from the a priori target and clutter 

information. Such information is routinely compiled for air 

defense radar. (See, for example [21]). The affine spectra, TS

and NS , of the target and clutter can be estimated from such 

plots. One such estimate could be the periodogram like estimate 

given as: †ˆT

W WS T T . Note that the Affine Wiener 

filter is Hermitian symmetric since both target and noise spectra, 
TS  and NS , are Hermitian, symmetric and bounded. Therefore, 

the minimum mean square error estimate ˆ ,WT a b  of the target 

reflectivity is given by 

†ˆ , ,W optT a b trace a b W D . (3.5) 

This estimate can be implemented in various forms leading to 

different adaptive receiver structures. Below, we describe two 

different implementations and describe how receiver design 

problem couples with the waveform design. 

Receiver Design 1: Let ns t  be a set of Schwartz class 

orthogonal basis for H , respectively. Then, the target 

reflectivity estimate in Equation (2.16) can be expressed as

ˆ , , ,n n

W opt

n

T a b W D s a b s

where      

2

n
n n i ds

s t s t t
dt

. (3.6) 

Note that n ny t D s  is the received echo signal if ns  is 

chosen to be the transmitted signal where n n ns s s . Then, 

Equation (3.6) can be reexpressed as 

†ˆ , , ,n n

W opt

n

T a b y W a b s  (3.7) 

where optW  is the Affine Wiener filter as in Equation (2.8).

Receiver Design 2: Alternatively, we can express the estimate in 

Equation (2.16) in terms of the matrix elements of the linear 

operators for a given set of orthogonal basis functions 

, , , ,
ˆ ,W n m m p p q q n

n m p q

T a b A B C E  (3.8) 

where 
n n ns s s ,

, , ,n m

n mA s a b s , , ,m p

m p optB W s s ,

, ,p q

p qC D s s , and , ,q n

q nE s s  (3.9) 

are the matrix elements of the operators ,

opt opt optW W W , and D D D .
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Algorithm for Receiver 1

1. Choose a Schwartz class orthogonal basis ns  for 
2 ,L dt .

2.  Transmit the pulses 
2

n
n n dsi

s t s t t
dt

.

3.  Modife the reference signals ns  by the linear 

transformation † ,optW a b  to match to the received 

echo, i.e., † ,n n

optz t W a b s t .

4. Correlate nz  with ns  and coherently sum, i.e., 
ˆ , ,n n

W

n

T a b y z .

Algorithm for Receiver 2 

1.  Choose a Schwartz class orthogonal basis ns  for 
2 ,L dt  as a set of transmitted pulses.  

2.  Form wideband auto- and cross ambiguity functions ,n mA

of the transmitted pulses ns .

3.  Compute the matrix elements, ,m pB , of the Affine Wiener 

filter with respect to the basis ns .

4.  Compute ,p qC , the inner product of the received echo 
py  with the transmitted pulses ns .

5. Compute ,q nE , the matrix elements of the operator .

6. Fuse echo py  as in Equation (3.8). 

The primary difference between Receiver 1 and 2 are in the 

choice of transmitted pulses. While in Receiver 1, the 

derivatives of the orthogonal basis functions are being 

transmitted, in Receiver 2, the orthogonal basis functions 

themselves are transmitted. While the Receiver 1 leads to a 

numerically simpler structure, designing appropriate waveforms 

is analytically more involved. On the other hand, Receiver 2 is a 

numerically less efficient implementation; however, it is less 

restrictive in the way transmission waveforms can be chosen. 

Note that, we have not specified how we can choose the set 

of basis functions ns . Therefore, the UWB image formation 

algorithms described above are valid independent of the choice 

of transmitted waveforms. Furthermore, the orthogonal functions 

or their derivatives do not need to be UWB signals. Thus, this 

reconstruction formula leads to a scenario where there are 

multiple radars operating independently, each with a limited low 

resolution aperture (i.e., narrowband transmission). 

Nevertheless, appropriate processing and fusion of data as 

described above from multiple narrowband radars leads to a 

synthetic UWB high resolution imaging. 

4. CONCLUSION 

In this paper, we present a mathematical framework based on the 

group representation theory for the modeling and estimation of 

ultrawideband signals. In particular, we described two adaptive 

receivers for the estimation of range-scale target reflectivity 

function in the presence of nonstationary noise and clutter. The 

receivers are designed such that both detection and estimation 

are performed simultaneously. For the significance of this issues 

in radar engineering, see the recent article [22].  

While our discussion is focused on UWB radar, the 

fundamental results of our study are directly applicable to UWB 

sonar, medical ultrasound, nondestructive testing and UWB 

wireless communications.
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