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Abstract - We propose a method for constructing FIR approximate 

inverse for discrete-time causal FIR periodic filters in the presence 

of measurement noise. The objective function to be minimized is 

the sum of the error variance over one period. The optimization 

problem is formulated based on the matrix impulse response of the 

multi-input multi-output (MIMO) time-invariant representation of 

periodic filter as one that minimizes the sum of equation errors of 

a set of over-determined linear equations. It is shown that the 

problem is equivalent to a set of least squares problems and a 

simple closed-form solution is obtained. Numerical examples are 

used to illustrate the performance of the proposed FIR 

approximate inverse.

I. INTRODUCTION 

  Periodic filters have been found useful in the areas of signal 

processing and communications, e.g., in subband coding [7], in 

speech scrambling [2], and in blind equalization [5]. The inverse, 

or approximate inverse, of a periodic filter is used for the recovery 

of scrambled signals [2] and for equalization of 

periodically-modulated communication channels [5]. Inverting 

periodic filters is discussed in [1], [3], [6] for noiseless case, and in 

[8], [9] when measurement noise is present. 

  It is well-known that associated with each N-periodic filter there 

is an N-input N-output time-invariant system that exhibits an 

input-output (I/O) relation identical to that of the filter [4], [7]. For 

general study of periodic systems, in particular, in the inverse 

filtering problem, this model is often adopted since the 

time-invariant nature would allow considerable simplification in 

analysis and design. It is known that such an MIMO filter model 

must satisfy certain structural constraint owing to causality of 

filters [4]. As a result, the design of periodic inverse filter based on 

the MIMO time-invariant filter model would essentially lie in 

finding an appropriate inverse time-invariant system subject to this 

constraint. Indeed, Lin and King in [3] proposed a method for 

finding the inverse transfer matrix in noiseless case. Recently, the 

approximate inverse design in the presence of noise based on the 

MIMO time-invariant formulation is considered in [8], [9]. For an 

arbitrary given periodic filter, the solution reported in [8] is in 

general IIR. In [9], the construction of an FIR approximate inverse 

for FIR periodic filters is investigated via the linear- 

matrix-inequality (LMI) framework.  

  In this paper we study the problem of constructing an FIR 

approximate inverse for a given FIR periodic filter when there is 

noise. The objective function to be minimized is the sum of 

variance of the approximation error over one period. There is a 
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natural formulation of the optimization problem in terms of the 

matrix impulse response of the MIMO time-invariant filter model 

as one that minimizes the sum of equation errors of a set of 

over-determined linear equations. It is shown that the problem is 

equivalent to a set of least squares problems. Compared with the 

existing iterative LMI approach [9], in which essentially the same 

objective function is considered, our formulation thus yields 

simple closed-from solution: it amounts to computing a set of least 

squares solutions. The paper is organized as follows. Section II is 

the problem statement and preliminary. Section III formulates the 

optimization problem. Section IV derives the solution. Section V is 

the simulation results. Finally, Section VI is the conclusion. 

Notation List: We denote by ml  the set of all ml  real 

matrices. The notations ml0  and lI  respectively stand for the 

ml  zero matrix and the ll  identity matrix. Denote by 

the NN  matrix unit-impulse sequence, i.e., NNn
0  for all 

0n  and N
I

0 . Let k
z  be the k-step delay operator such 

that, for any sequence s, knn

k ssz . Let mlH  be the space 

of all causal sequences of matrices 0, nml

nXX . Given 

a positive integer K, define the subspace 

KnHH mln

mlml

K XX allfor0:: . The norm of 

ml

KHX  is defined by 
1

0

22 ||||:||||
K

n

FnXX , where F||||  is the 

Frobenius norm. For ml

KH
1

X  and ml

KH
2

Y , let the augmented 

sequence ml

KH 2

3

YX  be such that nnn
YXYX  and 

213
,max KKK .

II. PROBLEM STATEMENT AND PRELIMINARY 

A. Problem Statement  

  Consider the discrete-time causal FIR N-periodic filter with 

input u and output z described by 

                kn

M

k

knn ugz
0

, , 0n ,             (2.1) 

where nu  and nz  are respectively the input and output at time n,

and the filter coefficient satisfies  

          kNnkn gg ,, , 0n , Mk0 .          (2.2) 

Let r be the observed signal, which is the sum of the filter output z

and a measurement noise v, i.e., vzr , and û  be the d-step 

delay of the input u to filter (2.1), that is,  

                  
.0,0

,,
ˆ

dn

dnu
u

dn

n            (2.3) 
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An FIR approximate inverse of filter (2.1) is a causal N-periodic 

filter with input r and output y described by  

                   
1

0

,

M

k

knknn rfy ,               (2.4) 

where, for each 1
0 Mk ,

                  kNnkn ff ,, , 0n ,           (2.5) 

such that the output y is close to û , i.e., the error signal  

                      yue ˆ                   (2.6) 

is small for the input signal u of interest.  

  The following assumptions are made in the sequel. 

1) The input 0, nuu n  to filter (2.1) is a white 

sequence with zero-mean and unit variance. 

2) The noise 0, nvv
n  is a white sequence with 

zero-mean and variance 2

v , and is uncorrelated with u.

  In this paper we propose a method for constructing an FIR 

approximate inverse of the form (2.4), with which the sum of error 

variance over one period is minimized. 

B. Matrix Impulse Response of FIR Periodic Filters 

Consider again the filter (2.1). Define the block input u  and 

output z  as 
NT

NnNnNnNn uuuu ][: 11 , 0n ,    (2.7) 

and 
NT

NnNnNnNn zzzz ][: 11 , 0n .    (2.8) 

It is well known that associated with filter (2.1) there is an N-input

N-output time-invariant system, with input u  and output z , that 

exhibits an input-output relation identical to that of filter (2.1) [4]. 

Based on the periodic difference equation (2.1), there is a simple 

procedure for obtaining the matrix impulse response of the 

associated MIMO time-invariant system. This can can be seen as 

follows. 

Write the ith component of 
nz  as (see (2.1))  

M

k

kinNki

M

k

kinNkinNinN ugugz
0

,

0

, , 10 Ni ,   (2.9) 

where the second equality follows from (2.2). Let 

NMm modulo: , thus 10 Nm , and choose 

                      1/ NML ,             (2.10) 

where NM /  is the smallest integer which is greater than or 

equal to NM / . Collecting 
inN

z  in (2.9), 10 Ni , into a 

vector and by rearrangement, we can express 
n

z  in (2.8) as the 

following product form:  

                          GUzn ,              (2.11) 

where LNNG  is the filter coefficient matrix whose ith row, 

10 Ni , is  

;11if],00[

,0if],00[

)1(10,,)(1

)1(10,,1

Nmgg

mgg

iNiMiimN

iNiMii
 (2.12) 

LNU  is the vector containing the input samples having 

contribution to 
n

z  and is given as 

.11if,][

,0if,][

1)(

11

Nmuuuu

muuuu
U

T

NnNnNMnNmNMnN

T

NnNnNuNMnN
 (2.13) 

We note that the leading zero entries in the row vectors given in 

(2.12) result from the fact that filter (2.1) is FIR with order M; the 

tailing zero entries are due to the causality of filter (2.1). In terms 

of block input nu  in (2.7), it can be checked that the input sample 

vector U in (2.13), for 10 Nm , is equal to 

                TT

n

T

n

T

Ln uuuU ][ 1)1( .           (2.14) 

Partition the matrix G defined in (2.12) as  

                  01 GGLG ,              (2.15) 

where NN

lG , 10 Ll . With (2.14) and (2.15), the 

product expression of nz  in (2.11) can be written in the 

convolutional form as 
1

0

L

l

lnln uz G . Hence the MIMO 

time-invariant system associated with filter (2.1) is described by 

uz G , where  denotes the convolution and the matrix 

impulse response G  which characterizes the system is 

                    
1

0

L

l

NN

L

l

l HzGG .         (2.16) 

  As a result, an Mth order FIR N-periodic filter of the form (2.1) 

is represented by a NN

LHG  as in (2.16), where L is given in 

(2.10) and NN

lG  is defined through the filter coefficient 

matrix G as in (2.15). Conversely, for a given NN

LHG , if we 

form the associated G matrix according to (2.15) and if its rows are 

of the form (2.12), then G  can be implemented as a single-input 

single-output (SISO) FIR N-periodic filter of the form (2.1). In 

particular, the 1M  nonzero entries in the ith row of G,

10 Ni , yield the filter coefficients kig ,
 for Mk0 . In 

the sequel, we will simply call G  the matrix impulse response of 

filter (2.1). The matrix impulse response of the d-step delay is 

given as follows. 

Proposition 2.1 [3]: The matrix impulse response associated with 

the d-step delay, when regarded as an N-periodic system, is  

                   NN

q

q

qn

n

n H 2

1

zDD ,          (2.17) 

where, qNpd , p and q are nonnegative integers with 

10 Np ,

NN

pN

q I 0

00
D  and NNp

q

I

00

0
D 1 .

                                                  

III. OPTIMIZATION PROBLEM  

  The optimality criterion is based on the fact that the error 

variance 2|| neE  is N-periodic for n large enough. Specifically, 

let the error signal e be as defined in (2.6). Then we have

            22 |||| Nnn eEeE , 1MMn .       (3.1) 

Equation (3.1) can be readily obtained by assumptions 1) and 2), 

and using (2.2) and (2.5). From (3.1), the sum of 2|| neE  over an 
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arbitrary block of N samples within the time range 
1

MMn  is 

thus a constant independent of which block is chosen for 

summation. This suggests the following objective function 

                     
1

2
1

1

||:
NMM

MMn

neEJ .            (3.2) 

If J  is small, then 2|| neE  is small for each 

111 NMMnMM . From (3.1), it follows that 

2|| neE  is small for all 1
MMn . The block invariant 

property of J  will also enable us to analyze the optimization 

problem by using the MIMO time-invariant representation of 

periodic filters. Moreover, since the objective function J  is 

quadratic in nature, the optimization problem, potentially, could be 

relatively easy to solve. Hence we propose to find an approximate 

inverse by minimizing the objective function J .

  To express the objective function J  in (3.2) in terms of the 

MIMO time-invariant filter models, let the matrix impulse 

response of filter (2.4) be NN

L

L

l

l

l H
1

1 1

0

zFF , where 

1/11 NML , and NN

lF , 10 1Ll , contain the 

unknown filter coefficients kif ,  for 10 Ni  and 

10 Mk . Define 1: 12 LLL  and thus, by definition of 

convolution, 2L  is the duration of the sequence GF , where G

is the matrix impulse response of filter (2.1). Assume that 
1

L  is 

chosen so that 22 qL , i.e., the signal duration of GF  is no 

less than that of the delay D  (see (2.17)). Then it can be shown 

that the objective function J  defined in (3.2) can be expressed 

as 
222 |||||||| FGFD vJ .            (3.3) 

Hence the optimization problem, in terms of matrix impulse 

responses, is to find an NN

LH
1

F , which can be realized as an 

SISO FIR N-periodic filter of the form (2.4), so as to minimize J

defined in (3.3). 

Remark: The assumption 22 qL  is necessary, since 

otherwise the quantity 2|||| GFD  in general can not be made 

small. This is because, if 2
2

qL , then NNq 01GF  and 

thus can not be kept close to 
1qD  by choosing any NN

LH
1

F .

IV. OPTIMAL SOLUTION  

  In this section we derive the optimal solution. Section 4.1 

formulates the optimization problem in terms of linear equations. 

Section 4.2 then derives the solution. 

4.1 Linear Equations Formulations 

  Associated the matrix impulse responses G  and D , define the 

respective augmented sequences 

                 NN

Lv H 2:ˆ GG ,          (4.1) 

                  NN

LNN H 2

2

0:ˆ DD .           (4.2) 

Then, with (3.3) and by definition of |||| , it can be checked that 

                   GFD
2||ˆˆ||J .               (4.3) 

Based on (4.3), the objective function J  in (3.3) can be directly 

expressed in terms of the N rows of the filter coefficient matrix 

associated with filter (2.4); this will allow a problem formulation 

in terms of a set of linear equations. Indeed, from (4.3) and by 

definition of Frobenius norm, it follows that 

2

10

1

0

2 ||])ˆ()ˆ[(||||)ˆ(ˆ||
2

2

FL

T

L

n

Fnn D GFGFGFDJ , (4.4) 

where  

                 NLN

L

TD 2

2

2

10 ]ˆˆ[: DD .        (4.5) 

Since 
1

0

1

ˆ)ˆ(
L

l

lnln GFGF , with some manipulations we have 

                TT

L AX])ˆ()ˆ[( 10 2

GFGF ,       (4.6) 

where 

               
NLN

L

TX 1

1

][: 01 FF ;         (4.7) 

NLNLTA 21 2
 is the blockNN -2  Hankel matrix with  

NNLTT

NNNN

2

022
1]ˆ00[ G  as the first block column and 

NLN

LNNNN
22

1022
]ˆˆ00[ GG  as the first block row. We 

should note that, since the sequence F  is the matrix impulse 

response of filter (2.4), for each 10 Ni , the ith row T

iX

of TX  in (4.7) is thus of the form (2.12), viz., for 

NMm modulo11 ,

.11if],00[

0,if],00[

1)1(10,,)(1

1)1(10,,1

11

1

Nmff

mff
X

iNiMiimN

iNiMiiT

i
  (4.8) 

With (4.4) and (4.6), we immediately have 
22 |||||||| FF

TTT AXDAXDJ , where the last equality 

follows since the Frobenius norms of a matrix and its transpose are 

the same. Again by definition of Frobenius norm, it can be further 

checked that 

                    
1

0

2||||
N

i

Fii DAXJ ,           (4.9) 

where 
NL

iD 22
 and 

NL

iX 1  are respectively the ith

columns of the matrices D and X (in (4.5) and (4.7)). With (4.9), 

the objective function J  is thus minimized if, for each

10 Ni , we can find an iX  of the form (4.8), or 

equivalently, 11M  unknown filter coefficients kif ,

(
1

0 Mk ) since the remaining entries in 
i

X  are zero, that 

minimize 2|||| Fii DAX . This is done in the next subsection. 

4.2 Optimal Solution 

  Since i
X  defined in (4.8) has only 1

1
M  non-zero entries, 

the product 
i

AX  simplifies to a linear combination of 1
1

M

columns of A. As a result, each group of equations ii DAX

contains a set of NL
2

2  scalar equations in 1
1

M  unknowns. 

Based on this observation, the optimization problem can be 

reduced to a set of N least squares problems, whose solutions are 

very easy to compute. To be specific, for 10 Ni , write 
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1

0,,
1

1

][:
MT

iMii ffY  be the ith filter coefficient vector. 

For 10 Ni , let 
)1(2 12 MNL

iA be the matrix obtained 

from A by deleting its first i (or first imN
1 , if 0

1
m )

columns and last iN 1  columns. For any iX  of the form 

(4.8), it follows immediately that 
iii

YAAX , for each 

10 Ni . Since 
i

Y  is arbitrary, the optimization problem is 

thus equivalent to 2||||min Fiii
Y

DYA
i

, 10 Ni . Assume that 

each 
i

A  is of full column rank (the condition holds in general 

owing to the block Hankel structure of the matrix A). The optimal 

iY
~

 is then computed as 

i

T

ii

T

ii
DAAAY

1~
, 10 Ni .      (4.10) 

Compared with [9], in which the resultant solution is obtained via 

the LMI method, the proposed approach leads to a relatively 

simple closed-form solution as in (4.10). 

V. SIMULATION RESULTS 

  In this section, numerical examples are used to illustrate the 

performance of the proposed FIR approximate inverse. For each 

conducted Monte-Carlo realization, the number of input samples to 

filter (2.1) is 100; the number of independent trials is 1000I . In 

the first simulation we illustrate the effect of 
1

M , the order of 

FIR approximate inverse, on performance. Consider the following 

2-periodic filter 

.oddfor,4976.0,1037.0,4.2,8.0

;evenfor,3318.0,1555.0,2,2.1

3,2,1,0,

3,2,1,0,

ngggg

ngggg

nnnn

nnnn

We fix reconstruction delay at 6d  and consider the two cases 

SNR=0 dB and 10 dB. For each 203
1

M , an approximate 

inverse is designed using (4.10). Figure 1 shows the computed 

time average objective function versus 1M , with respect to the 

two SNR levels. The respective theoretical values of the objective 

function J  computed using (4.9) are also shown. The result 

shows that the experimental values are almost identical to the 

theoretical values. We can also see that the performance is 

improved by increasing 1M . In particular, as 1M  increases, the 

approximation error tends to decrease toward a lower bound, 

whose value depends on SNR. In the second simulation, we 

illustrate the effect of reconstruction delay d on performance. We 

consider the 2-periodic filter used in the previous simulation and 

fix SNR at 10 dB. For each 110 d , an approximate inverse 

with order 1M  large enough is first designed so as to compute 

the associated lower bound of J  with respect to this particular 

SNR. We find that the choice 61 dM  suffices to yield J

fairly close to the computed lower bound associated with each 

delay. With such choice of 1M , Figure 2 shows the computed 

time average of J , together with the theoretical J , for 

110 d . As we can see, the performance is improved as d

increases. It seems that there is a best achievable performance 

(-12.3 dB in our case) under the fixed SNR, no matter how large d

is used. 

Figure 1 Approximation error versus order, delay d=6.

Figure 2 Approximation error versus delay, SNR=10 dB. 

VI. CONCLUSION  

  We propose a method for constructing an FIR approximate 

inverse for a given FIR periodic filter in the presence of 

measurement noise. The adopted optimality criterion, which 

minimizes the sum of error variances over one period, allows us to 

formulate the problem in time domain in terms of the matrix 

impulse responses of MIMO time-invariant representation of 

periodic filters. There is a simple procedure for obtaining the 

matrix impulse response directly from the coefficients of filters. 

The resultant optimization problem is essentially solving a set of 

least squares problems. The computations required are computing 

N least squares solutions but does not involve numerical 

optimization as is required in the existing LMI approach [9]. 
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