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ABSTRACT

In densely deployed wireless sensor networks, signals of adjacent
sensors can be highly cross-correlated. This property is utilized for
blind channel identification and equalization. Blind equalization
can be performed with linear complexity and with robustness to ill
channel conditions. Transmissions are more power and bandwidth
efficient, which is especially important for wideband sensor net-
works. The cross-correlation property and the finite sample effect
are analyzed. Simulations demonstrate the superior performance
of the proposed method.

1. INTRODUCTION

Wireless sensor networks consist of a large amount of densely de-
ployed sensors which are connected with each other wirelessly to
form a dynamic network. Since the density may be very high, e.g.,
tens of sensors per square meter [1], signals from adjacent sensors
are highly cross-correlated [2].

Sensors should be extremely power efficient because once de-
ployed they may not be recharged or replaced. Since wireless
transceivers consume a major portion of battery power [1], it is
critical to improve their power efficiency. However, one of the
major difficulties comes from the hash communication environ-
ment since sensors work in unknown environment with multipath
propagation and severe fading [3]. Sophisticated techniques have
to be used for reliable and efficient signal demodulation and de-
tection. In particular, blind equalization is necessary to mitigate
multipath propagation and to improve both bandwidth and energy
efficiency. This is especially important for wideband sensor net-
works [4] such as those for acoustic location or video surveillance
purposes. Unfortunately, it is mostly still an open area.

Since training sequences waste not only bandwidth but also
power, blind equalization becomes more promising, especially those
with the same complexity as training methods. However, many tra-
ditional blind methods may not be appropriate for sensor networks.
For those based on single-input-single-output (SISO) framework,
local and slow convergence [6] becomes a severe problem. In ad-
dition, many of them may not work for SISO channels with zeros
on the unit circle, i.e., ill-conditioned channels.

On the other hand, for single-input-multiple-output (SIMO)
methods, multi-antenna or over-sampling unnecessarily increases
complexity and thus reduces power efficiency. The most severe
problem is that most of them are not robust to non-ideal channel
conditions such as those with common zeros among sub-channels
[6].
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Fig. 1. System model of wireless sensor networks.

Traditional methods generally assume that signals from differ-
ent users (or sensors) are uncorrelated. This is not true in densely
deployed wireless sensor networks. Therefore, in this paper we
show that the cross-correlation among sensors can be exploited for
efficient and robust blind channel identification and equalization.

The organization of this paper is as follows. In Section 2, we
introduce the communication system model. In Section 3, we de-
rive the blind algorithms. In Section 4, we study cross-correlation
property and the finite sample effect. Simulations are shown in
Section 5 and conclusions are presented in Section 6.

2. PROBLEM FORMULATION

In wireless sensor networks with TDMA or similar channel access
schemes where sensors transmit data packets in their own slots, we
consider the case that a sensor receives signals from multiple other
sensors, e.g., Node 1 receives signals from Sensor 1 to J, as illus-
trated in Fig. 1. For each sensor, the baseband symbols, denoted
as si(n), are transmitted through a wireless channel {hi(n)}.

Let the received signal at the receiving node be xi(n). Define
xT

i (n) = [xi(n), · · · , xi(n − N)], sT
i (n) = [si(n), · · · , si(n −

N − L)], and vT
i (n) = [vi(n), · · · , vi(n − N)]. Then we have

xi(n) = Hisi(n) + vi(n) (1)

where the (N + 1) × (N + L + 1) channel matrix is

Hi =

⎡
⎣ hi(0) · · · hi(L)

. . .
. . .

hi(0) · · · hi(L)

⎤
⎦ . (2)

Channels of all sensors are assumed normalized.
The receiving node receives signals xi(n) of all i = 1, · · · , J

sensors, from which it needs to estimate the channels {hi(n)},
i = 1, · · · , J , and perform symbol estimation.
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We assume that the AWGN vi(n) is stationary with zero mean
and variance σ2

vi
, and is uncorrelated with symbols of all sensors.

The symbols {si(n)} are i.i.d. However, symbols from differ-
ent sensors, e.g., {si(n)} and {sj(n)}, may have non-zero cross-
correlation.

3. BLIND CHANNEL EQUALIZATION

3.1. Cross-correlation assumption of symbol sequences

Consider the transmitted signals of Sensor i and Sensor j, i.e.,
si(n) and sj(n), i �= j. Construct subsequences {si(ni�), ni� ∈
Ii}, where Ii = {ni1, ni2, · · · , niM , · · · } and nik < nim if
k < m, and similarly, {sj(nj�), nj� ∈ Ij}.

Cross-correlation assumption: We assume that there exist in-
dexes Ii, Ij and two sequences {wi(n)} and {wj(n)} such that

E[wi(ni�)si(ni� + di)s
∗
j (nj� + dj)w

∗
j (nj�)]

= rijδ(di)δ(dj), −N ≤ di ≤ N, −N ≤ dj ≤ N, (3)

where rij �= 0, (·)∗ denotes complex conjugate.
Equation (3) defines the cross-correlation among the subse-

quences extracted from the transmitted symbol sequences {si(n)}
and {sj(n)}. The cross-correlation becomes zero only for the sub-
sequences defined on Ii and Ij or, in another word, with zero-
shiftings di = dj = 0.

There are several ways to assure (3) in practice. The simplest
way is scrambling, a technique widely used in practical systems.
If the sensors i and j need transmit two highly cross-correlated se-
quences {bi(n)} and {bj(n)}, respectively, they can use pseudo-
noise (PN) sequences {ci(n)} and {cj(n)} to scramble them. The
transmitted symbols are then si(n) = ci(n)bi(n) and sj(n) =
cj(n)bj(n). The receiver can use wi(n) = c∗i (n) and wj(n) =
c∗j (n) to perform descrambling, which gives E[wi(ni�)si(ni� +
di)s

∗
j (nj� + dj)w

∗
j (nj�)] = δ(di)δ(dj)E[bi(ni� + di)b

∗
j (nj� +

dj)], where we assume that the PN sequences are with zero-mean
and unit variance.

Some other possible ways include the application of random
interleavers or direct-sequence spread-spectrum transmission [5].
To simplify the presentation, we consider the scrambling case only.

In addition, we define wij(�)
�
= wi(ni�)w

∗
j (nj�).

3.2. Blind channel estimation

With the knowledge about the position index Ii of Sensor i, 1 ≤
i ≤ J , we choose the received sample vectors from (1) as xi(ni�+
p) = Hisi(ni� +p)+vi(ni� +p). If p and N satisfy L ≤ p ≤ N ,
then the symbol si(ni�) is corresponding to the (p + 1)th column
hi(p) of the matrix Hi that contains all the channel coefficients
(c.f. (2)),

hi(p) = [0p−L, hi(L), · · · , hi(0), 0N−p]T , (4)

where 0k is a k dimensional vector.
Proposition 1. Define the cross-correlation matrix between

Sensor i and j as

Rij = E[xi(ni� + p)xH
j (nj� + p)wij(�)]. (5)

If L ≤ p ≤ N and i �= j, we have

Rij = rijhi(p)hH
j (p). (6)

Proof. From the cross-correlation assumption (3), the proof is
readily available [5]. �

Consider estimating the channel of Sensor i with signals from
all J sensors. From (5) we have an (N + 1) × [(J − 1)(N + 1)]
matrix

Ri = [Ri1, · · · ,Ri,i−1,Ri,i+1, · · · , RiJ ]. (7)

Since from (6) each column in the matrix Ri is simply a weighted
version of the column hi(p), the matrix is with rank 1. The chan-
nel of Sensor i is available as the left eigenvector of Ri corre-
sponding to its largest eigenvalue. Nevertheless, we can use the
following two ways to estimate channels efficiently from (6) and
(7).

The first way is to simply use a column in the matrix Ri with
sufficiently large magnitude as channel estimation. The second
way is to combine all the columns in Ri together recursively. To
begin, we initialize with any non-zero column from Ri, which can
in fact be determined similarly as the first way. Let such a column
be Ri(:, m), where we use the MATLAB notation to denote the
mth column. Then we can estimate the channel recursively as

ĥ
(0)
i = Ri(:, m)‖Ri(:, m)‖, if Ri(:, m) �= 0,

ĥ
(k)
i =

{
ĥ

(k−1)
i +

Ri(:,k)RH
i (:,k)ĥ

(k−1)
i

‖ĥ(k−1)
i

‖
, k �= m.

ĥ
(k−1)
i , k = m.

(8)

Proposition 2. The recursive procedure (8) converges to ĥi =
hi(p)ejθ

∑
0≤j≤J, j �=i

|rij |2, i.e., channel estimation with a scalar
ambiguity, where θ is the phase.

Proof: See [5].

3.3. Blind equalization

Once channels are estimated blindly, we can estimate linear filter
equalizers fi by a constrained optimization

arg min
fi

‖fH
i x̃i(n)‖2, s.t., fH

i h̃i = 1, (9)

where x̃i(n) is constructed similarly as xi(n) but with dimension
no less than N , and h̃i is an extended version of ĥi with zero-
padding for proper equalization delay.

It is well known that (9) converges to the MMSE equalizer

fi = R−1
x̃ h̃i(h̃

H
i R−1

x̃ h̃i)
−1, (10)

where Rx̃ = E[x̃i(n)x̃H
i (n)].

If the number of samples is limited or channels vary relatively
fast, we can use batch processing to take better utilization of avail-
able samples. We first calculate correlation matrix Ri (5) (7), then
estimate channel (8) and equalizer fi (10). The matrix inversion
formula can be used to avoid explicit inversion. The computa-
tional complexity is thus O(N2). It is affordable for systems with
limited sample amount.

On the other hand, if the sample amount is sufficient, we can
use the extremely efficient adaptive implementation. To avoid cor-
relation matrix estimation, we use the first way, i.e., use only one
column of the correlation matrix as the channel estimation

ĥ
(�)
i = βĥ

(�−1)
i + xi(ni� + p)x∗

j (nj� + q)wij(�), (11)

where β is used to track time-variation, and we need choose j and
q ∈ [0, L] online so that ‖ĥ(�)

i ‖ is sufficiently large. With the
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temporarily estimated channel, we adaptively implement (9) for
equalizer estimation by the Frost’s Algorithm

f
(n+1)
i = h̃

(n)
i + [I − h̃

(n)
i (h̃

(n)
i )H ][f

(n)
i − µx̃i(n)x̃H

i (n)f
(n)
i ],
(12)

where h̃
(n)
i is an extended (with zero-padding) version of ĥ

(�)
i ,

ni� ≤ n < ni,�+1, and I is an identity matrix. The parameter µ is
to adjust convergence. The computational complexity is O(N).

In addition, thanks to the special cross-correlation property
(3), the new algorithms are robust to non-ideal or ill channel con-
ditions, as can be easily seen from (6) and (10).

4. CROSS-CORRELATION PROPERTIES

4.1. Source cross-correlation and symbol cross-correlation

In densely deployed wireless sensor networks, cross-correlations
of the sensing values of adjacent sensors are high. It is deter-
mined by the source signals’ signal-to-noise ratio (S-SNR). How-
ever, for the blind methods in Section 3, what we need is the
cross-correlation among the transmitted symbols. In this section,
we study quantitatively the relationship between the source signal
cross-correlation and the symbol cross-correlation. To simplify the
problem, we consider binary signaling and all variables are thus
real.

Consider that the sensor i samples a source zi(m) with noise
ui(m). The sampling values (before encoding to binary sequence)
are ai(m) = zi(m) + ui(m), where ai(m), zi(m) and ui(m)
are with zero mean, ui(m) is independent of zi(m), ui(m) and
uj(m) are independent from each other if i �= j. The S-SNR is
defined as α = 10 log10(E[z2

i (m)]/E[u2
i (m)]).

Assume |ai(m)| ≤ 2La−1. Then we define the normalized
source signal cross-correlation between sensor i and j as

ra
ij

�
=

1

22La−2
E[ai(m)aj(m)], (13)

where we consider them after synchronization, i.e., ra
ij is the max-

imum cross-correlation. From the independence of noise, we have
ra

ij = E[zi(m)zj(m)]/22La−2 ≤ E[z2
i (m)]/22La−2. Since

E[a2
i (m)] = E[z2

i (m)] + E[u2
i (m)], we have

ra
ij ≤ E[a2

i (m)]

22La−2(1 + 10−α/10)
. (14)

Then, consider encoding ai(m) + 2La−1 into La-bit words
ai(m) + 2La−1 =

∑La−1

k=0
bik(m)2k, where bik(m) ∈ {1, 0}.

The symbol sik(m) is sik(m) = 2bik(m) − 1.
Proposition 3. Assume E[sik(m)] = E[sjk(m)] = 0. The

cross-correlation of symbol sequences depends on that of source
signals through

La−1∑
k=0

La−1∑
�=0

E[sik(m)sj�(m)]2k+�−2La

= ra
ij + 1 − (1 − 2−La)2. (15)

Proof. See [5].
To analyze (15), first, we skip all items within the double sum-

mation except the three ones with E[sik(m)sjk(m)], k ∈ {La −
3, La − 2, La − 1}, and second, we assume E[sik(m)sjk(m)] =
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Fig. 2. Symbol (bit) cross-correlations as functions of source SNR.
◦: analysis results from (16). ×: simulation results without data
fusion. �: simulation results with data fusion.

rb
ij for k ∈ {La − 3, La − 2, La − 1}, where rb

ij is the symbol
cross-correlation. Then from (15) we have

rb
ij =

64

21
[ra

ij + 1 − (1 − 2−La)2]. (16)

Since La is usually large enough, a thumb of rule about the
relation between source signal cross-correlation and symbol cross-
correlation can be obtained from (16) as

rb
ij ≈ 3ra

ij . (17)

Note that from (14) we have ra
ij ≤ 1/3.

Therefore, the symbol cross-correlation is high as long as the
source cross-correlation is high. The results (16)-(17) have been
verified through numerical experiments as shown in Fig. 2. La =
12. Noises are added to a random source sequence to generate
sensors’ sampling values. Then symbol cross-correlations are cal-
culated by (16) for the analysis results, and by Monte-Carlo sim-
ulation for the simulated results. Since data fusion is an impor-
tant concern on symbol cross-correlation, we evaluate also the
cross-correlation after data fusion with a linearly constrained least
squares data fusion method. Results in Fig. 2 show that the analy-
sis results fit well to the simulated results.

4.2. Finite sample effect on blind channel estimation

In binary transmission, with finite number of samples, the cross-
correlation becomes 1

M

∑M

�=1
si(ni�)sj(nj�)wij(�) = r̂ij . It is

easy to show that r̂ij − rij is a random variable with zero mean
and variance

σ2
ss =

E[w2
ij(�)]

M

�
=

A

M
. (18)

For symbol cross-correlations with non-zero shiftings, we find that
εs(di, dj) = 1

M

∑M

�=1
si(ni� + di)sj(nj� + dj)wij(�) is a ran-

dom variable with zero mean and variance σ2
ss, where di �= 0 or

dj �= 0.
For noises vi(n) and vj(n), their cross-correlation εv(di, dj) =

1
M

∑M

�=1
vi(ni� + di)vj(nj� + dj)wij(�) is a random variable

with zero mean and variance σ2
vi

σ2
vj

A/M . Cross-correlation be-

tween symbols and noises, εsv(di, dj) = 1
M

∑M

�=1
si(ni� +

di)vj(nj� + dj)wi(ni�) is a random variable with zero mean and
variance σ2

vj
E[w2

i (ni�)]/M , and εvs(di, dj) = 1
M

∑M

�=1
vi(ni�+
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Fig. 3. BER of the batch algorithms as functions of T-SNR. 10
sensors.

di)sj(nj� + dj)wj(nj�) is a random variable with zero mean and
variance σ2

vi
E[w2

j (nj�)]/M .
Then the estimation of cross-correlation matrix (5) becomes

R̂ij = rijHiZpHH
j + HiEsHH

j + HiE
H
sv + EvsHH

j + Ev ,
where Zp is diagonal with only one non-zero element which is 1
at the (p, p)th the entry. The (m,n)th elements in the matrices
Es, Esv , Evs and Ev are εs(p − m, p − n), εsv(p − m,p − n),
εvs(p − m, p − n) and εv(p − m, p − n), respectively.

Consider the estimation of hi(p). From (6) the best estimation
is ĥi = R̂ijhj(p)/rij . Define the estimation mean square error

(MSE) as MSE
�
=

√
E[‖ĥi − hi(p)‖2].

Proposition 4. If the signal-to-noise ratio during transmission
(T-SNR= 20 log10 E[|xi(n) − vi(n)|]/E[|vi(n)|]) is high, in or-
der to have MSE = γ, the number of symbols used in correlation
calculation should satisfy

A(N + 1)

γ2r2
ij(J − 1)

≤ M ≤ A(N + 1)(2L + 1)

γ2r2
ij(J − 1)

. (19)

Proof. See [5].
Therefore, higher cross-correlation rij , smaller vector size N

and more sensors all decrease M . In binary case, in order to have
MSE≤ γ, we need M > (N + 1)/[γ2(J − 1)].

5. SIMULATIONS

We compared our new algorithms with the training-based MMSE
equalizer, the cumulant-based blind algorithm (HOS) [6], the blind
CMA, and the blind subspace method [5].

The source signals were some speech signals after compres-
sion by the GSM codec. BPSK was used. Channel length L+1 =
5. Channels for each sensor were randomly generated and could
be ill-conditioned. For channel estimation, we used N = 6. The
equalizer length was 15. For the subspace method, we assumed
that each sensor had three receiving antennas.

Experiment 1. We used only one data packet (260 symbols)
to evaluate the batch algorithms with finite sample amount. For
our batch algorithm, we tried two S-SNR: 10 dB and 20 dB. In
addition, we used 1/3 of the symbols (i.e., 80 bits) to calculate
cross-correlations. For the training method, we used 20% of the
symbols, or 52 bits, for training. From Fig. 3, with 20 dB S-
SNR, our blind method achieved almost the same performance as
training method.
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Fig. 4. BER as functions of number of data packets. S-SNR 20
dB, T-SNR 20 dB. 260 bits per data packet. 10 sensors.

Experiment 2. We used more data packets to evaluate both
our batch and adaptive algorithms, with 1/3 of each data packet
used for cross-correlation. As shown in Fig. 4, both the new batch
and adaptive algorithms achieved the performance of the training
method. The new adaptive algorithm rapidly converged within 10
data packets.

6. CONCLUSIONS

In this paper, we show that cross-correlation among sensors can be
used to develop efficient blind channel estimation and equalization
algorithms in densely deployed wireless sensor networks. Their
superior performance is demonstrated by simulations. We have
also analyzed the cross-correlation property of sensor signals and
the effect of finite sample amount.
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