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ABSTRACT
In this paper, we propose a robust adaptive blind multichannel

identification algorithm in frequency-domain. It utilizes the fast

Fourier transform (FFT) to reduce the computational complex-

ity when the channel impulse response (IR) is long. Moreover,
the Newton-LMS algorithm is obtained in frequency domain with

small computational load to improve the convergence speed. The

advantage of the proposed method is its robustness to input noise,

especially when the channel IR is long, e.g., the room acoustic IR
with a length up to hundreds or thousands taps. The conventional

methods cannot obtain estimate with acceptable accuracy and low

computational load. The situation becomes worse when the input

signal-to-noise ratio (SNR) is low. The simulation results show
that the proposed method is suitable to estimate long multichannel

IRs in practical environments.

1. INTRODUCTION

System identification is a fundamental technique in building a math-

ematical model of a dynamic system. It has many applications in
the area of digital signal processing, digital communication, etc. If

the system input/output data are available, the conventional system

identification methods [1] can be used to find the system model.

However, in some applications ,the input data are unobservable
or expensive to acquire, and only output data are available. Typ-

ical cases include acoustic dereverberation, wireless communica-

tion and time delay estimation. Conventional system identification

method cannot be applied. The solution is inevitably blind multi-
channel identification (BCI) method.

At the first sight, BCI is impossible since the input and the

channel are both unknown. However, the pioneer work done by

Sato [2] indicated the possibility of BCI under some assumptions.
Since then, many BCI algorithms have been proposed in literature

( [3,4] and the references therein). These algorithms can generally

be classified into two classes: one is based on second-order statis-

tics (SOS) and the other is based on higher-order statistics (HOS).

HOS based methods are not so practical as SOS based methods be-
cause of their slow convergence speed and non-convex optimiza-

tion cost function. As pointed out in [5], the BCI can be simply

solved by SOS. SOS based method has potentially fast conver-

gence. Therefore, the focus of BCI shifted to SOS methods.
Unfortunately, most of the SOS based methods are difficult to

implement in adaptive mode [6]. They need eigenvalue decom-

position (EVD) or singular value decomposition (SVD) of the co-

variance or data matrix, which is generally intensive in computa-

tion, especially when the IR length is large. Moreover, some SOS
based algorithms have the assumption that the input signal should

be white. This is not the case for many applications, such as acous-

tic devereberation.

Considering the source signal characteristics and long room IR
in acoustic applications, we find that the normalized multi-channel

frequency domain LMS (NMCFLMS) algorithm [7] is possible to

adaptively estimate the room acoustic IR of large length. How-

ever, the NMCFLMS algorithm has a drawback that it requires
high input SNR, since the estimated instantaneous gradient vec-

tor of NMCFLMS is very sensitive to the input noise. If a robust

gradient vector can be found, the resulting adaptive method will

be insensitive to the input noise. In this paper, we propose a new
cost function for derivation of a robust adaptive method, called

normalized blind frequency-domain least mean square (NBFLMS)

method. The computer simulation shows that the proposed method

can produce acceptable estimate of multichannel IR even in SNR
as low as 0dB. Therefore, the proposed algorithm is practical for

applications.

This paper is organized as follows. In Section 2, the system

model and notation used in this paper are discussed. In Section
3, the proposed method is derived in detail. Simulation results are

shown in Section 4 to illustrate the performance of the proposed

method. Brief conclusion is given in Section 5.

2. SYSTEM MODEL

Notations used in this paper are defined before we formulate the

problem and develop the algorithm. E{·}, (·)∗, (·)T , (·)H , �
and || · || stand for mathematical expectation, complex conjugate,
vector/matrix transpose, vector/matrix Hermitian transpose, linear

convolution, and Euclidean norm, respectively. The identity ma-

trix is I.

There are M sensors used. Each sensor picks up the target
signal as well as the environment noise. The target signal s(k)
propagates through the ith channel with IR hi,k, i = 1, 2, · · · , M ,

and is corrupted by an additive environment noise ni(k). The re-

ceived signal xi(k) of ith channel is expressed as

xi(k) = hi,k � s(k) + ni(k), i = 1, 2, · · · , M. (1)

In most applications, the IR hi,k can be approximated as FIR filter

with length L and coefficient vector

hi = [hi,0 hi,1 · · · hi,L−1]
T
. (2)

II - 250-7803-8484-9/04/$20.00 ©2004 IEEE ICASSP 2004

➠ ➡



Here, we assume that all the IRs are fixed or changing very slowly

although the time variation can be tracked with the proposed method.

The estimate of IR coefficient vector ĥi of ith channel at mth iter-

ation is expressed as

ĥi(m) = [ĥi,0(m) ĥi,1(m) · · · ĥi,L−1(m)]T . (3)

3. PROPOSED BLIND MULTICHANNEL
IDENTIFICATION METHOD

Before the detail derivation of the method, some matrices are first
defined and discussed. Due to space limitation, the proofs are

omitted.

Definition 1 The discrete Fourier transform (DFT) matrix FL is a
L by L matrix, whose (p, q)th element (FL)p,q = e−j2πpq/L,p, q =
0, 1, · · · , L − 1.

Lemma 1 The inverse matrix of FL is F−1
L = 1

L
F H

L .

Definition 2 The windowing matrices are defined as

W
10
L×N′ = [IL×L 0L×(N−1)], W

10
N′×L = (W10

L×N′ )T
,

W
01
N×N′ = [0N×(L−1) IN×N ], W

01
N′×N = (W01

N×N′ )T
,

W
01
N′×N′ =

[
0(L−1)×(L−1) 0(L−1)×N

0N×(L−1) IN×N

]
,

W
10
N′×N′ =

[
IL×L 0L×(N−1)

0(N−1)×L 0(N−1)×(N−1)

]
,

where N ′ = N + L − 1.

Definition 3 The transformed windowing matrices are defined as

W
10
L×N′ = FLW

10
L×N′F

−1
N′ , W

01
N×N′ = FNW

01
N×N′F

−1
N′ ,

W
10
N′×L = FN′W

10
N′×LF

−1
L , W

01
N′×N = FN′W

01
N′×NF

−1
N ,

W
10
N′×N′ = FN′W

10
N′×N′F

−1
N′ , W

01
N′×N′ = FN′W

01
N′×N′F

−1
N′ .

Lemma 2 The transformed windowing matrices have the follow-
ing properties

W
10
L×N′ =

N ′

L
(W 10

N′×L)H
, W

01
N′×N =

N

N ′
(W01

N×N′ )H

The derivation of NBFLMS is based on cross relation (CR)
criteria [8,9] in frequency domain using overlap-save method [10].

The linear filtering of a signal by a filter can be obtained in block

mode using circular convolution. Refer to [7] for details. Here we

define the posteriori filtered signal block yi,j(n, m) of length N ,
which is produced by filtering nth signal block of ith channel by

IR estimate at mth iteration jth channel. It is expressed in matrix

notation as

yij(n, m) = W
01
N×N′X̆i(n)h̃j(m) (4)

where n, m(n ≤ m) stand for data block index, the matrix X̆i(m)
is a circulant matrix with its first column x̃i(n), and

x̃i(n) = [xi(nN − L + 1) · · · xi(nN + N − 1)]T ,

yij(n, m) = [yij(mN) · · · yij(mN + N − 1)]T ,

h̃j(m) = W
10
N′×Lĥj(m).

(5)

The signal block of the posteriori error in frequency domain

based on CR criteria between ith and jth channel is determined as

eij(n, m) = FN (yij(n, m) − yji(n, m))

= W
01
N×N′ [Dxi

(n)W 10
N′×Lĥj(m)

− Dxj
(n)W 10

N′×Lĥ i(m)]

(6)

where

Dxi
(n) = FN′X̆i(n)F−1

N′ , ĥ i(m) = FLĥi(m) (7)

Lemma 3 The matrix Dxi
(m) in (7) is a diagonal matrix whose

diagonal elements are given by the DFT of the first column of
X̆i(n).

With the derived error signal in (6), the squared error ε(n, m)
is defined as

ε(n, m) =
M−1∑
i=1

M∑
j=i+1

e
H
ij (n, m)eij(n, m) (8)

Define the cost function for derivation of NBFLMS as

J(m) = E{
m∑

n=m−K

β
m−n

ε(n, m)} (9)

where 0 < β ≤ 1 is the forgetting factor. When K = 0, the
cost function is similar to the one used in [7], which minimizes the

least mean square of the instantaneous error. In the case of K > 0,

the cost function in (9) aims to minimize the least mean square of

not only the instantaneous error, but also the weighted posteriori
errors. The gradient vector estimated by cost function in [7] is very

sensitive to the input noise, causing NMCFLMS method requiring

high input SNR to estimate multichannel IRs with long taps. The

proposed method is less sensitive to input noise, which will be
illustrated by the simulation result.

The LMS algorithm is constructed as

ĥk(m) = ĥk(m − 1) − µ � Jk(m) (10)

where µ is the stepsize. �Jk(m) is the estimated gradient vector.

To achieve fast convergence, the Newton method [11] is used

ĥk(m) = ĥk(m − 1) − ρE{�2
Jk(m)}−1 � Jk(m) (11)

where �2Jk(m) is the Hessian matrix and ρ is the stpesize.

In the derivation of LMS type algorithm, the gradient vector

�Jk(m) and the Hessian matrix �2Jk(m) should be estimated
first. They are given in Lemma 4.

Lemma 4 The gradient vector �Jk(m) and Hessian matrix�2Jk(m)

of J(m) to ĥk(m) are given by

�Jk(m) =
∂J(m)

∂ĥ
∗

k(m)
=

m∑
n=m−K

β
m−n

M∑
i=1

(W01
N×N′Dxi

(n)W 10
N′×L)H

eik(n, m)

�2
Jk(m) =

∂2J(m)

∂ĥ
∗

k(m)∂ĥ
T

k (m)
=

m∑
n=m−K

β
m−n

M∑
i=1,i�=k

W
10
L×N′D

H
xi

(n)W01
N′×N′Dxi

(n)W 10
N′×L)
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It is obvious that the calculation of �Jk(m) and �2Jk(m)
is computational intensive, especially when K is large. In this pa-

per, we use approximation of �Jk(m) and �2Jk(m) in algorithm
derivation.

Lemma 5

W
01
N′×N′ ≈

N

N ′
I2L×2L, when N

′ is large.

W
10
N′×N′ ≈

L

N ′
I2L×2L, when N

′ is large.

Lemma 6 When N ′ is large, �Jk(m) and �2Jk(m) can be ap-
proximated as

�Jk(m) ≈
L

N ′
W

10
L×N′

M∑
i=1[

Rxixi
(m)W10

N′×Lĥk(m) − Rxixk
(m)W10

N′×Lĥ i(m)
]

�2
Jk(m) ≈ W

10
L×N′

⎡
⎣ M∑

i=1,i�=k

Rxixi
(m)

⎤
⎦ W

10
N′×L

where

Rxixi
(m) =

m∑
n=m−K

β
m−n

D
H
xi

(n)Dxi
(n)

Rxixk
(m) =

m∑
n=m−K

β
m−n

D
H
xi

(n)Dxk
(n)

Lemma 7 When N ′ and K is large, Rxixi
(m) and Rxixk

(m)
can be recursively estimated by

Rxixi
(m) ≈ βRxixi

(m − 1) + D
H
xi

(m)Dxi
(m)

Rxixk
(m) ≈ βRxixk

(m − 1) + D
H
xi

(m)Dxk
(m)

Lemma 8

E{�2
J(m)} = W

10
L×N′

M∑
i=1,i�=k

Rxixi
W

10
N′×L

where Rxixi
= E{Rxixi

(m)} is estimated as

R̂xixi
(0) = Rxixi

(0)

R̂xixi
(m) = λR̂xixi

(m − 1) + Rxixi
(m)

where λ (0 < λ < 1) is the exponential forgeting factor.

The inverse of Hessian matrix is simplified as

Lemma 9 Let P =
∑M

i=1,i�=k Rxixi
, we have

W
10
N′×LE{�2

J(m)}−1
W

10
L×N′ =

N ′

L
W

10
N′×N′P

−1
(12)

With the estimated R̂xixi
(m), we have

W
10
N′×LE{�2

J(m)}−1
W

10
L×N′ =

N ′

L
W

10
N′×N′P

−1(m)

where

P(m) =
M∑

i=1,i�=k

R̂xixi
(m)

Finally, we obtain the NBFLMS algorithm in the following

Theorem 1.

Theorem 1 The constrained NBFLMS algorithm is

h̄k(m) = h̃k(m − 1) − ρW
10
N′×N′P

−1(m)

M∑
i=1

[
Rxixi

(m)h̃k(m) − Rxixk
(m)h̃i(m)

]

k = 1, 2, · · · , M

The unconstrained NBFLMS algorithm is

h̄k(m) = h̃k(m − 1) − ρP
−1(m)

M∑
i=1

[
Rxixi

(m)h̃k(m) − Rxixk
(m)h̃i(m)

]

k = 1, 2, · · · , M,

where h̃k(m) = FN′ h̃k(m). To avoid the trivial solution, the
updated filter coefficient vectors are normalized to vector with unit
norm .

h̃k(m) =
h̄k(m)

||h(m)||
, h(m) = [h̄1(m) · · · h̄M (m)]T

The computational load of NBFLMS in Theorem 1 is low
since the matrices Rxixk

(m) and P(m) are both diagonal.

4. NUMERICAL STUDY

In this section, we asses the performance of the proposed method.

There are five microphones used in simulation. The acoustic en-

closure is a small office room with dimension (x × y × z) =
(2.8m × 3.2m × 2.2m), wall reflection coefficients 0.8 and floor
celling reflection coefficients 0.4. The position of each micro-

phone is given in Table I. A source signal is placed in the pois-

tion (1.0m, 1.5m, 1.4m). The IR relating speech source and each

microphone is calculated using image method [12] with sampling
rate 8kHz. A white background noise is used. The length of IR

is set as L = 256, so that most of the reverberation is taken into

account.

In Fig. 1, one of the estimated channel IR and its associated

frequency response are compared with its true IR and frequency
response. It is obvious that the estimated channel response is very

close to the true one.

The normalized root mean square projection misalignment (NRM-

SPM) in decibel is also used as a performance measure of estima-
tion accuracy versus different input SNR. The NRMSPM is de-

fined as

NRMSPM = 20 log10

⎡
⎣ 1

||h||

√√√√ 1

N

N∑
i=1

||ξ(i)||2

⎤
⎦

ξ = h −
hT ĥ

ĥT ĥ
ĥ

(13)
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1 2 3 4 5

x 0.80 0.80 1.00 1.20 1.20

y 2.0 2.0 2.0 2.0 2.0

z 1.6 1.2 1.6 1.6 1.2

Table 1. Position (x,y,z) of five microphones (in meter)
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Fig. 1. The comparison of the estimated IRs and the real IRs (5dB

input SNR)

where N is the number of Monte Carlo runs, (·)(i) denotes a value

obtained for the ith run. ξ is the projection misalignment vec-

tor [13]. The NRMSPM of NRFLMS algorithm after 200 Monte
Carlo runs is shown in Fig. 2. The NBFLMS algorithm can ob-

tain acceptable IR estimate at low input SNR. For NMCFLMS,

the estimate with reasonable accuracy is achieved with SNR up to

50dB [7]. It is also shown in Fig. 2 that NMCFLMS has large
NRMSPM. Therefore, the NMCFLMS cannot be applied directly

in practical applications with low input SNR, while the proposed

NBFLMS can.

5. CONCLUSION

A robust adaptive blind multichannel identification algorithm in

frequency domain is proposed. It uses a new cost function in al-

gorithm derivation. With some approximation, no extra compu-
tational load is introduced. The proposed method has the advan-

tage of robustness to input noise, especially when the IR length

is large. The simulation results show the effectiveness of the pro-

posed method.
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Fig. 2. Comparison of NRMSPM between NBFLMS and NM-

CFLMS at 200 Monte Carlo runs versus different input SNR
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