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ABSTRACT

We present a new differential space-time coding scheme
based on generalized multi-channel amplitude and phase
modulation. Each code matrix employed by our scheme
consists of an amplitude and a phase component, and can be
thought of as a space-time multi-channel generalization of
the scalar amplitude and phase shift keying (APSK) constel-
lation. The amplitude component takes a scalar coefficient
that controls the total transmission power, while the phase
component is a unitary matrix formed from PSK symbols.
Both the amplitude and phase components are differentially
encoded and admit efficient differential decoding. We show
that the maximum likelihood (ML) decoding of the ampli-
tude coefficient and phase matrix is decoupled. Moreover,
the phase matrix, when constructed from orthogonal de-
signs, is amenable to decoupled differential decoding of the
phase entries, which further simplifies the decoding com-
plexity significantly. Simulation results show that the pro-
posed amplitude-phase differential space-time modulation
scheme achieves a performance very close to its phase-only
counterpart, while providing higher spectral efficiency of-
fered by amplitude modulation.

1. INTRODUCTION

Utilizing multi-antenna transmission, space-time coding can
offer both diversity and coding gain to the receiver. While
coherent detection of space-time codes requires multi-channel
estimation, a challenging task especially in fading environ-
ments, differential space-time modulation/coding circum-
vents this difficulty. A number of differential space-time
modulation schemes have been proposed for both flat-fading
[1, 2, 3, 4] and frequency-selective fading [5, 6] channels.
All of the above schemes utilize unitary code matrices formed
by phase-shift-keying (PSK) entries. These unitary code
matrices can be thought of as multi-channel extensions of
the scalar PSK constellation. Therefore, we may call these

This work was supported in part by the Army Research Office under
Contract DAAD19-03-1-0184, and by the New Jersey Commission on Sci-
ence and Technology.

schemes as generalized phase modulation based differential
space-time techniques.

It is known that PSK becomes energy inefficient when
transmission rate is high. This has motivated the use of
multi-level constellations, such as amplitude and phase shift
keying (APSK), for differential transmission in single-antenna
systems (see [7] and references therein). Differential space-
time modulation using multi-level constellations has been
recently examined in several studies. Specifically, Tao and
Cheng [8] proposed a scheme that forms space-time code
matrices with multi-level entries from orthogonal designs.
Since the code matrix carries non-uniform energy (Frobe-
nius norm), their decoding technique requires an estimate
of the energy of the previous code matrix to decode the cur-
rent one. As a result, error propagation may occur. Another
method introduced by Xia [9] utilizes APSK constellation
for systems equipped with two transmit antennas. It draws
two APSK symbols at a time that are used to form an Alam-
outi code matrix [10]. The code matrix has constant energy
due to a design constraint that one of the symbol pair is al-
ways picked from the inner ring and the other from the outer
ring of the APSK constellation (see Figure 1 for an exam-
ple of 16-APSK). The code matrix is differentially encoded,
similarly to the differential Alamouti scheme [5]. In addi-
tion, a one-bit amplitude coefficient, which is differentially
encoded by differential ASK, is used to control the overall
energy transmitted from the two transmit antennas. Both the
Alamouti code matrix and the amplitude coefficient can be
differentially decoded, thus without incurring error propa-
gation.

In this paper, we introduce a new differential space-time
coding scheme based on generalized multi-channel ampli-
tude and phase modulation. The proposed scheme utilizes
code matrices having an amplitude and a phase component.
These code matrices can be thought of as multi-channel
generalizations of the APSK constellation. The amplitude
component is a scalar that controls the total transmission
power, while the phase component is a unitary matrix formed
from PSK symbols. Both the amplitude and phase compo-
nents are differentially encoded and allow efficient differ-
ential decoding. Unlike the method of [9] which works for
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Fig. 1. 16-APSK constellation.

systems with two transmit antennas, the proposed scheme
can accommodate systems with an arbitrary number of an-
tennas. The maximum likelihood (ML) decoding of the
amplitude coefficient and phase matrix is shown to be de-
coupled; furthermore, the phase code matrix, if constructed
by orthogonal designs, offers decoupled differential decod-
ing of the phase entries, thus further reducing the decoding
complexity. The proposed scheme yields full spatial diver-
sity. Simulation results show that the proposed amplitude-
phase differential space-time modulation scheme achieves a
performance very close to its phase-only counterpart, while
providing higher spectral efficiency offered by amplitude
modulation.

Notation: Vectors (matrices) are denoted by boldface
lower (upper) case letters; all vectors are column vectors;
superscripts (·)∗, (·)T , (·)H denote the complex conjugate,
transpose, and conjugate transpose, respectively; IN denotes
the N×N identity matrix; ‖·‖ denotes the Frobenius norm;
and �(·) takes the real part of the argument.

2. PROPOSED SCHEME

2.1. Scalar APSK Constellation

We briefly review the notation associated with the scalar
APSK constellation, which forms the basis of the proposed
amplitude-phase differential space-time coding scheme. Con-
sider an 2M -APSK constellation that consists of a combi-
nation of an independent M -PSK: exp{j2πm/M},m =
0, 1, . . . ,M − 1, and a binary ASK (2-ASK): rL and rH

with (r2
L + r2

H)/2 = 1 [7]. Let

γ � rH/rL. (1)

Then, it is ready to show that rL =
√

2/(γ2 + 1). Figure 1
depicts an example of the 16-APSK constellation. Note that
each M -APSK symbol carries log2 M + 1 bits of informa-
tion, with 1 bit carried by the 2-ASK while log2(M) bits by
the M -PSK.

2.2. Differential Encoding: Generalized Multi-Channel
Amplitude-Phase Modulation

Consider a space-time modulation system utilizing nT trans-
mit antennas and nR receive antennas. For simplicity of
presentation, we consider in the following nT = 2. The ex-
tension to nT > 2 can be made in a manner similar to that
in [11]. At time 2nT , where T denotes the symbol duration
and n the code matrix index, the space-time encoder takes
a total of 2 log2 M + 1 bits of information and map them to
a 2 × 2 unitary matrix Cn, formed from a pair of M -PSK
symbols, and a one-bit coefficient αn ∈ {1, γ, 1/γ}, where
γ is defined in (1). The composite space-time code matrix
αnCn can be thought of as a multi-channel extension of the
scaler APSK constellation, with αn being denoted as the
amplitude coefficient and Cn the phase matrix. The space-
time code matrix αnCn is then differentially modulated (to
be specified) and transmitted over a period of 2T seconds,
yielding a spectral efficiency of (log2 M +0.5) bits/sec/Hz.

The unitary phase matrix Cn can be formed in various
ways. For efficient decoding, we consider the one based
on orthogonal designs [12], which reduces to the Alamouti
scheme for nT = 2 [10]. In particular, we map the first
2 log2 M bits of information to two M -PSK symbols cn,1

and cn,2. The phase code matrix is formed as follows:

Cn =
1√
2

[
cn,1 −c∗n,2

cn,2 c∗n,1

]
, (2)

where the scaling factor of 1/
√

2 is to ensure that Cn is
unitary and we assume that cn,1 and cn,2 are drawn from
a unit-energy M -PSK constellation. The last information
bit is mapped to the amplitude coefficient αn as described
below.

• Initialization:
For n = 0, let

D0 =
√

2I2, (3)

β0 = rL. (4)

The first transmitted space-time code matrix is

S0 = β0D0. (5)

• Differential Encoding:
For n > 0, the encoder takes a total of 2 log2 M + 1
bits of information, in which the first 2 log2 M bits
are mapped to Cn, formed as in (2), and the last bit,
denoted by bn, is mapped to the amplitude coefficient
αn. The amplitude coefficient is assigned and differ-
entially encoded according to the following rule:

αn =

⎧⎪⎨
⎪⎩

1, if bn = 0,
γ, if bn = 1 and βn−1 = rL,

1/γ, if bn = 1 and βn−1 = rH ,

(6)

βn = βn−1αn. (7)
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The phase matrix is differentially encoded as follows:

Dn = Dn−1Cn. (8)

The transmitted space-time code matrix Sn is given
by

Sn = βnDn. (9)

2.3. Differential Decoding

We assume frequency non-selective fading channels. The
received signal at the nR receive antennas are given by

Yn =
√

ρRHSn + Wn, (10)

where Yn ∈ C
nR×2 denotes the received data matrix, ρR �

ρ/2 and ρ denotes the SNR per receive antenna, H ∈ C
nR×2

denotes the channel matrix, and Wn ∈ C
nR×2 denotes the

channel noise with independent and identically distributed
(i.i.d.) complex Gaussian entries of zero mean and unit vari-
ance (i.e., CN (0, 1)-distributed). Substituting (9) into (10)
leads to

Yn = αnYn−1Cn + Vn, (11)

where Vn � Wn −αnWn−1Cn. Since Cn is unitary, it is
ready to show that Vn consists of i.i.d. complex Gaussian
entries with zero mean and variance 1 + α2

n.
Consider ML detection. The likelihood function of Yn,

conditioned on αn, Cn and Yn−1, is given by

p(Yn|Yn−1, αn,Cn) =
1

π2nR(1 + α2
n)2nR

× exp
{
− 1

1 + α2
n

∥∥∥Yn − αnYn−1Cn

∥∥∥2
} (12)

Maximizing the likelihood function is equivalent to mini-
mizing

f(αn,Cn) � 2nR log(1 + α2
n) +

‖Yn − αnYn−1Cn‖2

1 + α2
n

.

(13)
After some manipulations, we notice that

f(αn,Cn) = f1(αn) − f2(αn)f3(Cn), (14)

where

f1(αn) � 2nR log(1 + α2
n) +

‖Yn‖2 + α2
n‖Yn−1‖2

1 + α2
n

,

(15)

f2(αn) � 2αn

1 + α2
n

, (16)

f3(Cn) � �{
tr(YH

n Yn−1Cn)
}
. (17)

Equation (14) indicates that the decoding of αn and Cn is
decoupled. In particular, we can first decode Cn by max-
imizing f3(Cn), and then substitute the maximizing Cn

back into (14) to decode αn.

Therefore, we first decode the phase matrix by maxi-
mizing f3(Cn) over all possible phase matrices. Since Cn

is obtained by orthogonal designs, the decoding process can
be further simplified. Specifically, it is easy to see that max-
imizing f3(Cn) is equivalent to minimizing

f ′
3(Cn) = ‖Yn − Yn−1Cn‖2. (18)

Let yn,1 and yn,2 be the first and second column of Yn, and
yn−1,1 and yn−1,2 are similarly defined for Yn−1. We can
write f ′

3 as follows (see (2))

f ′
3(cn,1, cn,2)

=‖yn,1 − cn,1yn−1,1 − cn,2yn−1,2‖2

+ ‖yn,2 + c∗n,2yn−1,1 − c∗n,1yn−1,2‖2

=‖yn,1 − cn,1yn−1,1 − cn,2yn−1,2‖2

+ ‖y∗
n,2 − cn,1y∗

n−1,2 + cn,2y∗
n−1,1‖2

=
∥∥ỹn − Ỹn−1cn

∥∥2
,

(19)

where in the second equality, we took the conjugation of
the second term, which does not affect the norm, and in the
third, we used the following definitions

ỹn �
[
yT

n,1, yH
n,2

]T
, (20)

cn �
[
cn,1, cn,2

]T
, (21)

Ỹn−1 �
[
yn−1,1 yn−1,2

y∗
n−1,2 −y∗

n−1,1

]
. (22)

It is ready to verify that Ỹn−1 has orthogonal columns with
ỸH

n−1Ỹn−1 = (‖yn−1,1‖2 + ‖yn−1,2‖2)I2. Therefore, the
the phase angles of cn, i.e., θn � arg(cn), can be estimated

by computing arg
(
ỸH

n−1ỹn

)
followed by rounding to the

nearest multiple of 2π/M . Clearly, the decoding of cn,1 and
cn,2 is decoupled.

Once we have the decoded symbols ĉn,1 and ĉn,2, we
use them to form Ĉn, substitute it back to (14) and decode
αn as follows:

α̂n = arg min
αn∈{1,γ,1/γ}

f(αn, Ĉn). (23)

3. NUMERICAL RESULTS

We consider a system equipped with nT = 2 transmit an-
tennas and nR = 1 receive antenna. The underlying chan-
nel is flat Rayleigh fading, i.e., the channel coefficients in
H are generated as i.i.d. complex Gaussian variables with
zero mean and unit variance, varying independently from
trial to trial. We consider two differential space-time coding
(DSTC) schemes, namely the proposed one based on gener-
alized multi-channel amplitude-phase modulation, referred
to as DSTC/Amplitude-Phase, and the one based on only
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Fig. 2. Bit error rate (BER) as a function of Eb/N0 for
a phase-only and the proposed amplitude-phase differential
space-time modulation scheme in Rayleigh fading channels
when nT = 2 and nR = 1.

phase modulation [1], referred to as DSTC/Phase-Only. Due
to the additional amplitude bit used in our scheme, we can-
not match the data rate for both schemes exactly. Instead,
we compare the two schemes for the nearest possible data
rates. The performance measure is the bit error rate (BER)
as a function of Eb/N0, where Eb denotes the total en-
ergy per bit used in the transmission. Figures depicts the
BER of the DSTC/Phase-Only scheme built from 64PSK
and 32PSK constellations with the associated data rate of
6 bits/sec/Hz and 5 bits/sec/Hz, respectively. Also shown
there is the BER of the proposed DSTC/Amplitude-Phase
scheme built from 2ASK and 32PSK with a rate of
5.5 bits/sec/Hz. The 2ASK uses γ = 1.3, which was found
to provide good performance for our scheme. It is seen that
the proposed scheme achieves almost identical BER to the
lower-rate DSTC/Phase-only with rate 5 bits/sec/Hz, and
significantly outperforms the higher-rate DSTC/Phase-only
with rate 6 bits/sec/Hz. Also noted is that all schemes yield
full spatial diversity.

4. CONCLUSIONS

We have presented a differential space-time coding scheme
based on generalized multi-channel amplitude and phase
modulation. We have shown that the proposed scheme ad-
mits decoupled decoding of the amplitude coefficient and
phase matrix, as well as decoupled decoding of the phase
entries of the phase matrix, given that the latter is formed
by orthogonal designs. The proposed amplitude-phase dif-
ferential space-time coding scheme achieves a performance
very close to its counterpart based only on phase modula-
tion, while offering higher spectral efficiency provided by
amplitude modulation. Although we only discussed the case

with nT = 2 transmit antennas. Extension of the proposed
scheme to arbitrary nT can be made by following a proce-
dure in in [11].
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