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ABSTRACT

In this paper, we analyze the performance of multi cellular
MIMO systems in Rayleigh fading. Consistent with prac-
tical scenarios, we assume two types of interference: in-
tracell interference from users within the same cell as the
desired user and intercell interference from outer cell users.
We derive a compact closed form expression for the out-
age probability of such a system in the form of finite sums.
The expression is easily computable and allows for simpler
and faster study of various MIMO configurations. An in-
teresting outcome of the analysis is that using antennas on
the receiver side results in better performance since transmit
diversity does not combat interference from same cell users.

1. INTRODUCTION

In wireless communication systems, system performance
can be significantly improved by employing multiple an-
tennas at the receiver and/or the transmitter, through com-
bining the signals received from the multiple independent
channels to mitigate fading and suppress interference. Al-
though initial interest in smart antennas has mainly focused
on receiver diversity, nowadays multiple input multiple out-
put (MIMO) systems with both transmit and receive diver-
sity are receiving a lot of attention.

Maximum Ratio Transmission (MRT) [1] is a popular
and simple scheme that maximizes the system output signal-
to-noise ratio (SNR) in MIMO systems. In [2], the perfor-
mance of MRT is analyzed in Rayleigh fading and an av-
erage symbol error rate expression is provided. However,
the impact of co-channel interference (CCI) is not consid-
ered. In the presence of CCI, the optimal strategy is to
choose the transmission and receiver weights to maximize
the system signal-to-interference plus noise ratio (SINR),
thereby achieving interference suppression. However, this
optimal technique does not provide significant performance
improvement over MRT when the number of interferers is
large, since diversity order is insufficient to cancel out all in-
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terferers. In such systems, MRT is preferred because of its
implementation simplicity and near optimal performance.

The performance of MRT with equal power co-channel
interferers is analyzed in [3], and an outage probability ex-
pression is provided. However in practical systems, unless
the users are power controlled by the same station (BS),
their received powers would not be the same. Besides, users
choose their transmission weights according to the channel
between them and their power controlling BS, which is the
same as the desired user’s BS for same cell users, but differ-
ent for other cell users. Hence, for accurate characterization
of CCI, one needs to consider a multi-cellular system, where
the CCI from interferers within the same cell (intracell) and
from other cells (intercell) are treated separately due to their
different statistical characterizations.

In this paper, we extend the analysis of MIMO MRT
systems to a multicellular environment, consistent with prac-
tical systems. We consider fixed number of equal power in-
tracell interferers and intercell interferers with distinct pow-
ers. We obtain a simple closed form outage probability ex-
pression in the form of finite sums for arbitrary number of
antennas. We then use these expressions to analyze the per-
formance improvements achieved by increasing the number
of antennas at the receiver and transmitter sides.

The paper is organized as follows: The system model is
introduced in Section 2. In Section 3, the outage probability
is derived. Section 4 contains the numerical results.

2. SYSTEM MODEL

We consider the uplink of a multi-cellular communication
system with t transmit antennas at the mobile and r receive
antennas at the BS. The system operates in the presence of
thermal noise and multi-access interference, which consists
of two components: intracell interference from users power
controlled by the same BS as the desired user and inter-
cell interference from users in other cells. The channel is
spatially independent flat Rayleigh fading provided that the
antenna spacing is sufficiently large. It is also assumed to
be slowly-varying so that the fading coefficients remain un-
changed over the frame, allowing a quasi-static analysis.
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2.1. Received Signal

The r × 1 received signal vector, r(t), consists of compo-
nents from the desired user, Nint intracell users, Next inter-
cell users and thermal noise.

r(t) =
√

P0 H0,0 wt
0,0 s0(t) +

Nint∑
n=1

√
Pn Hn,0 wt

n,0 sn(t)

+

Next∑
k=1

√
Pk Hk,0 wt

k,mk
sk(t) + n(t) (1)

The user power levels are denoted by Pi, where i is the user
index and index 0 corresponds to the desired user. Similarly,
si corresponds to the information bits with zero-mean and
unit variance. The r × 1 noise vector n is complex white
Gaussian with zero-mean and covariance σ2 I . wt

i,j repre-
sents the weight vector at the transmitter of the i-th mobile
which is power controlled by the j-th BS, where ||wt

i,j || =
1. The r × t channel gain matrix between user i and BS
j is denoted by Hi,j , and consists of independent complex
Gaussian distributed elements with zero mean and unit vari-
ance, CN (0, 1). The received signals at the multiple anten-
nas are combined with weight vector wr

0 to form the deci-
sion statistic y(t) = (wr

0,0)
H r(t), where ||wr

0,0|| = 1.

2.2. Transmission and Receiver Weights

We choose the transmit and receive weight vectors to max-
imize the overall output SNR of the system (MRT) [1]. Im-
plementing MRT is a practical choice for systems with large
number of interferers, since using the optimal weights that
maximize the output SINR provides very little performance
gain over MRT due to insufficient diversity order, at the cost
of increased complexity. Another advantage of MRT is that
it does not require the mobiles to have full knowledge of the
uplink channel to determine the transmitter weights. Only
the largest right singular vector of the channel matrix is re-
quired. Since channel information is usually sent through
a feedback channel, it means that less information has to
be sent which can consequently be done more frequently or
with more accuracy at the same feedback rate.

It has been shown that the MRT transmit and receive
weight vectors are respectively the left and right singular
vectors of the channel matrix H that corresponds to the
largest singular value. The singular value decomposition
of Hi,j (channel matrix between user i and BS j) of rank
m is given by Hi,j =

∑m
k=1 σk

i,j uk
i,j (vk

i,j)
H , where σk

i,j ,
uk

i,j , vk
i,j are the singular values (in descending order) and

the left and right singular vectors respectively. We note that
the left and right singular vectors have the same distribution
as normalized complex Gaussian random vectors [4, 5].

Users choose their transmit weight vectors according to
the channel between them and the BS that they are power
controlled by (wt

i,j = v1
i,j). The receive weight vector is

chosen to coherently combine the signals from the desired
user (wr

0,0 = u1
0,0). Using these weights, the decision statis-

tic (y(t) = (wr
0,0)

H · r(t)) can be expressed as

y(t) =
√

P0 σ0,0 s0(t) +

Nint∑
n=1

√
Pn σn,0 (u1

0,0)
H u1

n,0 sn(t)

+

Next∑
k=1

√
Pk (u1

0,0)
H Hk,0 v1

k,mk
sk(t) + n(t)

The output SINR is given as P0 λ0

Iint + Iext + σ2 , where

Iint =

Nint∑
n=1

Pn λn |(u1
0,0)

H u1
n,0|2 (2)

Iext =

Next∑
k=1

Pk |(u1
0,0)

H Hk,0 v1
k,mk

|2 (3)

λi = |σ1
i,0|2 denotes the largest eigenvalue of the complex

Wishart matrix [4] HH
i,0 Hi,0 of user i.

3. OUTAGE PROBABILITY

Outage probability is one of the most common performance
measures in wireless communication systems. It is defined
as the probability that the system SINR falls below a certain
quality of service threshold, ε. Since Iint, Iext and λ0 are
statistically independent (discussed in more detail in Sec-
tion 3.3), this probability can be written in integral form as

Pout(ε) =

∫∫
fIint(z) fIext(y) Fλ0

(
ε (z + y + σ2)

P0

)
dy dz

(4)
where fIint

(z) and fIext
(y) are the density functions of in-

tracell and intercell interference respectively. Fλ0(x) de-
notes the cumulative distribution function (cdf) of the largest
eigenvalue of the Wishart matrix HH

0,0 H0,0. In order to
compute the outage probability, we need to identify these
distributions.

3.1. Largest Eigenvalue of a Wishart matrix

The distribution of the largest eigenvalue (λ) of a complex
Wishart matrix is provided in [2] as a finite linear combi-
nation of elementary gamma densities. Hence, the cdf of λ
can be expressed as [6]

Fλ(a) =

min{t,r}∑
n=1

(t+r)n−2n2∑
m=|t−r|

dm,n

m !
γ(m + 1, na) (5)

The exact values of the coefficients of the summands, dm,n,
are computed and tabulated in [2] for most antenna config-
urations of interest. For a > 0, γ(a, x) is the incomplete
gamma function defined as

γ(a, x) =

∫ x

0

e−t ta−1 dt = (a − 1)!

[
1 − e−x

a−1∑
i=0

xi

i!

]
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The above finite sum representation of γ(a, x) is valid when
a is an integer. The k-th order moment of λ is given as

E[λk] =

min{t,r}∑
n=1

(t+r)n−2n2∑
m=|t−r|

dm,n(m + k) !

nk m !
(6)

3.2. Intracell Interference

We first analyze the distribution of the intracell interference
term (2). Since all intracell interferers are power controlled
by the desired user’s BS, their average received power levels
are assumed to be the same and equal to PI . Since the vec-
tors u1

i,0 (first left singular vectors of Hi,0) have the same
distribution as normalized complex Gaussian random vec-
tors of size r×1, the term |(u1

0,0)
Hu1

n,0|2 in (2) is identified
as a normalized correlation coefficient and is denoted by ρn.
For r ≥ 2, ρn is known to be a beta random variable with
the following density function.

fρn
(x) =

{
(r − 1) (1 − x)(r−2) if 0 ≤ x ≤ 1,

0 else

where E[ρn] = 1/r and E[ρ2
n] = 2/(r(r + 1)). Hence,

intracell interference is the sum of the products of largest
eigenvalues of Wishart matrices and beta random variables,
all of which are independent from one another. A closed
form expression is not available for the distribution of Iint.
Therefore, we look for approximate distributions. Since
each of the terms λn ρn are positive, we make use of the
central limit theorem for causal functions [7] and approxi-
mate the total intracell interference by a gamma distribution.

fIint
(z) ≈ zα−1 e−z/β

βα Γ(α)
, z > 0, α, β > 0 (7)

where α = Var(z)/E[z] and β = (E[z])2 /Var(z).
As can be seen from the above expressions, we only

need to know the first and second order moments of Iint to
fully characterize the approximate distribution. These mo-
ments can be expressed as

E[Iint] = Nint PI E[λn]E[ρn] (8)

Var(Iint) = Nint P 2
I

[
E[λ2

n]E[ρ2
n] − (E[λn]E[ρn])2

]
where the moments of λn (6) and ρn have already been pro-
vided in closed form.

This approximation is valid even for small number of
intracell interferers because the distribution of the product
λn ρn is experimentally observed to be very similar to a
gamma distribution, and sum of i.i.d. gamma variables is
also a gamma random variable. In Figure 1, the intracell
interference distribution is plotted through simulations for
2 and 6 interferer systems. In both cases, the gamma dis-
tribution provides a very close approximation to the actual
distribution.
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Fig. 1. Intracell interference distribution - Nint = {2, 6}

3.3. Intercell Interference

The intercell interference is given by (3). It has been shown
in [8] that dk = (u1

0,0)
H Hk,0 v1

k,mk
is complex Gaussian

distributed with zero mean and unit variance. Hence, the
intercell interference is a weighted sum of gamma random
variables with a single parameter 1. Provided that these
weights are distinct, a closed form expression for its dis-
tribution is known.

fIext(y) =

Next∑
k=1

ak

Pk
e−y/Pk , ak =

Next∏
i=1
i�=k

Pk

Pk − Pi
, y > 0 (9)

The interference components Iint and Iext are functions
of independent variables with the exception of the common
term u1

0,0 in both expressions. In [8] it is shown that Iext is
independent of the random vector u1

0,0, hence the intracell
and intercell interference are statistically independent.

3.4. Outage Probability

For a MIMO system the outage probability can be expressed
in closed form for an arbitrary number of transmit and re-
ceive antennas. The outage probability expression for sys-
tems with multiple antennas employed on only one side of
the channel are provided in [8]. In this work we are inter-
ested in the case where min(t, r) ≥ 2. We first substitute
the approximate distribution of the intracell interference (7)
and the exact distributions of the intercell interference (9)
and λ0 (5) into the outage probability expression (4).

Pout(ε) =

min{t,r}∑
n=1

(t+r)n−2n2∑
m=|t−r|

dn,m

m !

Next∑
k=1

ak

∫ ∞

0

zα−1 e−z/β

βα Γ(α)

×
∫ ∞

0

e−y/Pk

Pk
γ

(
m + 1,

n ε

P0
z +

n ε

P0
y +

n ε σ2

P0

)
dy dz

We first derive the following equality, making use of the
integral definition of the incomplete gamma function.
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µ

∫ ∞

0

e−µyγ(n, c y + d) dy = γ(n, d) + eµd/c

×
(

c

c + µ

)n

(Γ(n) − γ (n, d (1 + µ/c))) (10)

Using the above equality and the finite sum representation
of the incomplete gamma function, we can evaluate the out-
age probability integral and obtain a closed form expression.

Pout(ε) =

min{t,r}∑
n=1

(t+r)n−2n2∑
m=|t−r|

dn,m

m !

Next∑
k=1

ak

× B

(
m + 1,

n ε

P0
,
n ε σ2

P0
,

1

Pk
, α, β

)
(11)

where B(n, c, d, µ, α, β)

=

∫ ∞

0

zα−1 e−z/β

βα Γ(α)

∫ ∞

0

µ e−µy γ(n, cy + cz + d) dy dz

= (n − 1) !

{
1 − e−d

n−1∑
i=0

i∑
j=0

(
i

j

)
βj di−j cj

(1 + c β)α+j i !

× Γ(α + j)

Γ(α)

[
1 −

(
c

c + µ

)n−i
]}

In (11), ε denotes the SINR threshold for outage and σ2 is
the thermal noise variance. α and β are the gamma distri-
bution parameters for the approximate intracell interference
distribution (7) and ak’s are as given in (9). This outage
probability expression is in the form of finite sums and is
easily computable, allowing for simpler and faster analysis
of multi cellular MIMO systems.

4. NUMERICAL RESULTS

In this section, we verify the outage probability expression
we have derived (11) using simulations. We also analyze
the effects of increasing the number of antennas on system
performance. We consider a system with 10 equal power in-
tracell interferers (PI = 1) and 10 intercell interferers with
power levels {3.3, 2.8, 2.4, 2.1, 1.8, 1.6, 1.5, 0.8, 0.5, 0.2}.
P0 is assumed to be 1 and the thermal noise variance σ2

is 0.1. In Figure 2, we plot the outage probabilities com-
puted using both the analytical expression and Monte Carlo
simulations, for different antenna configurations.

As seen in the figure, the analytical and simulation re-
sults are in very close agrement. When we compare the
curves with the same order of diversity, we observe that
using multiple antennas at the receiver side results in bet-
ter performance. The reason is that transmit diversity does
not combat interference from intracell users, since they op-
timize their transmission weights according to the channel
with the desired user’s BS. Hence, they are benefiting from
the transmit diversity that the system has to offer. Since
intracell interference can only be combatted using receive
diversity, the 2 × 8 system performs better than the 4 × 4
and 8 × 2 configurations.
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Fig. 2. Outage probability - Nint = 6, Next = 10

5. CONCLUSION

In this paper, we analyzed the performance of multi-cellular
MIMO systems with co-channel interference from both same
cell and other cell users, and derived a closed form, easily
computable outage probability expression. We have shown
that using antennas on the receiver side results in better per-
formance since unlike transmit diversity, the receive diver-
sity does combat interference from same cell users.
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