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ABSTRACT

This work addresses the problem of noise robustness from the
standpoint of the sensitivity to noise estimation errors. Since the
noise is usually estimated in the power-spectral domain, we show
that the implied error in the cepstral domain has interesting proper-
ties. These properties allow us to compare two key methods used
in noise robust speech recognition: spectral subtraction and par-
allel model combination. We show that parallel model combina-
tion has an advantage over spectral subtraction because it is less
sensitive to noise estimation errors. Experimental results on the
Aurora2 database confirm our theoretical findings, with parallel
model combination clearly outperforming spectral subtraction and
other well-known signal-based robustness methods. Our Aurora2
results with parallel model combination, a basic MFCC front-end
and a simple noise estimation are close to the best results obtained
on this database with very complex signal processing schemes.

1. INTRODUCTION

This work addresses the problem of noise robustness in Automatic
Speech Recognition (ASR), and presents a theoretical investiga-
tion of two main approaches used to deal with additive noise:
spectral subtraction (SS), which operates in the signal domain, and
parallel model combination (PMC), which operates in the acous-
tic model domain. We propose a square-error analysis of spectral
subtraction [1] and parallel model combination [2] for cepstral fea-
tures to investigate the best domain to operate in when dealing with
additive noise. The square-error analysis is interesting because it is
closely related to the likelihood measure used in HMM-based ASR
and because an analytic solution can be found for cepstral features.
The starting point of this research is the fact that any noise robust-
ness method that relies on noise estimation is prone to be sensitive
to noise estimation errors. In particular, most methods estimate
the noise in the power spectral domain, but the final feature space
used for pattern recognition is the cepstral domain. Hence, cepstral
domain estimation errors will most directly influence ASR perfor-
mance. We will study the effects that a noise estimation error in the
power spectral domain has on a cepstral domain feature. Also we
will show that, because of the nonlinearity of the log-compression,
the implied error in the cepstral domain has interesting properties
that explain the superiority of PMC over spectral subtraction. Fi-
nally, experimental results on the ETSI Aurora2 database [3] show

that PMC is superior to spectral subtraction, thus confirming our
theoretical findings.

2. BACKGROUND

The ongoing discussion about noise robustness methods has yet
to provide a clear answer as to whether or not model-based ap-
proaches are superior to signal-based approaches. The (approx-
imate) maximum likelihood solution devised in PMC [2] would
hint at a theoretical advantage of PMC over methods not based on
maximum likelihood. However, there is no theoretical study that
compares PMC to methods operating in the signal domain. Nor
we are aware of experimental work that would clarify this mat-
ter. For instance, the best Aurora2 systems have complex signal-
based robustness components [4, 5]. One can argue that this is
because the Aurora2 evaluation requires models to be trained in
both clean and noisy conditions (noisy-condition models are not
suitable for PMC, which is designed for clean-condition acoustic
models). However, it has been recently shown that a modified ver-
sion of PMC can outperform signal-based methods even for noisy-
condition models [6]. For all these reasons we felt compelled in
looking for a comparative theoretical investigation of PMC and
spectral subtraction.

3. NOISE SENSITIVITY ANALYSIS

Let � � 
 � � � � � � � 
 � be the cepstral operator, where 
 �� � �
is the power spectral vector of the noisy speech input 1, � is

a linear transformation such as the DCT and � � � � 
 � is the vector
of the element logarithms � � � �  " � . For simplicity we also assume
that � is an orthonormal matrix, i.e. � $ � � ( . Let

� * ,� * � * ,�
be respectively the clean speech, the estimated clean speech, the
noise, and the estimated noise power spectra. Also define 1 * ,1 * 3 * ,3
as one component of

� * ,� * � * ,�
respectively. The basic form of

spectral subtraction analyzed here obtains an estimate of the clean
features by removing the estimated noise from the noisy speech in-
put in the power spectral domain, while guaranteeing the positivity
of the estimated clean speech power spectrum:

1In this study we ignore the effect of the cross correlation term 5 6 5 5 9 5
in the power spectrum.
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Fig. 1. Compensation spaces and corresponding estimation errors.

� �� � � � ��
if � � �� � � ��

�� � � ��
otherwise

(1)

Notice that the estimation error affecting recognition is related to
the distance between the unknown clean cepstrum and the esti-
mated clean cepstrum. For simplicity we will assume the flooring
constant

� � � in our formulation. It can be shown that this as-
sumption does not restrict the generality of our conclusions as the
following formulation can be extended to any value of

�
.

In the case of PMC the noisy model mean � � � � � � 	 �  �
is computed from the clean model mean in the cepstral domain as:

�  " $% � � 	 � & ' 	 �   � ��  * (2)

Here the estimation error affecting recognition is related to the dis-
tance between the unknown noisy speech model mean and the es-
timated noisy speech model mean.

Figure 1 shows how estimation errors are related to compen-
sation methods in both signal and model space.

Based on the previous observations we can define the square-
error for no compensation, spectral subtraction and PMC as fol-
lows: � ,% . � 0 0 � 	 � � �  � � 	 �  0 0 , �

(3)� ,  � 0 0 � 	 �  � � 	 ��  0 0 , �
(4)� ,8 : . � 0 0 � 	 � � �  � � 	 � � ��  0 0 , �
(5)

In the definition of � 8 : . we have used � 	 � � ��  for �  " $% for
notational convenience. Notice that all the errors can be expressed
as:

� , � 0 0 � 	 ?  � � 	 @  0 0 , � (6)

� 0 0 � � � � 	 ?  � � � � � 	 @  0 0 , �
� 0 0 � � � � 	 ? B @  0 0 , � 0 0 � � � 	 ? B @  0 0 , �
� F

�
� � � , 	 H � B I �  � F

� K ,� �

where ? B @ is the vector of the components ratios H � B I � and K ,� is
the square-error of the component N . Thanks to this we can restrict
our analysis to each term K ,� of the sum in (6), thus reducing the
study to a one-dimensional problem. Specifically, this is allowed

PMC error upper bound r=g(R)

no compensation

PMC and SS zone

zone

PMC zone
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Fig. 2. Minimum square-error regions in the O P � R S
plane.

by the property of the logarithm that transforms sums into prod-
ucts; this makes the following formulation difficult to extend to
generalized cepstrum based on other compression functions, such
as the root-cepstrum [7], because no closed form solution can be
found.

Let T � �� � �
be the noise estimation error for one vector

component. Notice that to respect the positivity of �� � ��
we have

the constraint � � U T U � . We define the quantities
R � T B �

,
which represents the relative noise estimation error, and P � � B �

,
which represents the signal to noise ratio (SNR). This allows us to
rewrite the component square-errors as:

K ,% . � � � � , X Z � ZP \ �
(7)

K ,  � � � � , _ Z � RP ` �
(8)

K ,8 : . � � � � , X Z � RP � Z \ �
(9)

under the constraints: � P � �� Z U R U P � (10)

Notice that the constraint related to the existence of the loga-
rithm (

R U P ) concerns only spectral subtraction. We can now
compare the square-error for spectral subtraction and for the no-
compensation baseline by solving the following inequality:

K ,  U K ,% . * (11)

When (11) is satisfied, spectral subtraction will perform better than
no compensation. We get the condition:R U PP � Z � a 	 P  * (12)

Intuitively in (12), the lower the noise estimation error is, the more
likely spectral subtraction is to be better than no compensation.
Then we compare PMC with no compensation by solving:

K ,8 : . U K ,% . * (13)

We get the condition: R U P � ZP � c 	 P  * (14)
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Compensation A B C Avg.

NONE 38.38 40.00 39.01 39.15
SS 44.07 44.99 47.00 45.02
PMC 80.68 78.82 77.57 79.32

Table 1. Comparison of spectral subtraction and PMC digit accu-
racies on Aurora2 (clean training) for MFCC static coefficients.

As before, the lower the noise estimation error is, the more likely
PMC is to be better than the baseline. However notice that
� � � � � and that � � � , which implies � � � always. This
is important because it implies that the region in which it is worth
using PMC includes the region in which it is worth using spectral
subtraction. Indeed if we compare PMC with spectral subtraction
square-errors by solving:

� �	 �  �
� �� � �

(15)

we have that (15) is always satisfied. This means that PMC is
always better than spectral subtraction.

Figure 2 shows the regions of the � � � � �
plane where the dif-

ferent compensation methods perform best in a square-error sense.
Three main regions are obtained: below � � � � it is worthwhile
using spectral subtraction and below � � � � it is worthwhile using
PMC. Above these curves, both spectral subtraction and PMC are
useless, because the resulting square-error is larger than the initial
square-error obtained with no compensation. Notice that spectral
subtraction cannot be applied for

� � � (because the argument of
the logarithm will be negative) but PMC can be applied even for� � � . Also notice that in the spectral subtraction zone, which is
included in the PMC zone, the PMC square-error is always lower
than the spectral subtraction square-error. This can be summarized
in the following statements:

� PMC is always better than spectral subtraction.
� The spectral subtraction region decreases when the SNR de-

creases.
� The PMC region increases when the SNR decreases.
� For SNRs lower than 2dB the PMC region increases very

quickly whereas the spectral subtraction region decreases
very quickly

� For large noise over-estimation errors no compensation
method is effective.

� If the noise is under-estimated both spectral subtraction and
PMC are more likely to outperform the baseline.

We will see that these theoretical results are confirmed by our ex-
periments.

4. EXPERIMENTAL RESULTS

Experiments are conducted on the ETSI Aurora2 database [3],
used for standardization of the front-end analysis for distributed
speech recognition in noisy environments. It consists of US-
English digits in presence of synthetically added noise and channel

SNR SS PMC

clean 97.45 97.67
20 dB 78.12 94.47
15 dB 63.06 91.38
10 dB 44.51 85.42
5 dB 25.79 73.38
0 dB 13.63 51.93
-5 dB 8.97 24.82

Avg. 45.02 79.32

Table 2. SNR breakdown of spectral subtraction and PMC results
for static coefficients.

distortion. Performance is measured on three test sets containing
noises already seen in training (set A), different from those seen
in training (set B) and different from those seen in training plus an
additional channel distortion (set C).
Our baseline system is based on standard MFCC features. The
speech signal is represented with 13 MFCC coefficients computed
over a window of 20ms with a frame rate of 100Hz. Depending
on the experiment, first and second derivatives are added. Cepstral
mean normalization (CMN) is not used when comparing spectral
subtraction and PMC. Both spectral subtraction and PMC rely on
the same noise estimate computed as the average filter-bank energy
over the first 250ms of each utterance. For spectral subtraction we
use a flooring constant

� � � � �
. Also neither a voice activity de-

tector nor frame dropping are used. Acoustic models are based on
whole-word models, with 8 states and 8 gaussians per state, trained
in clean conditions. To validate our theoretical findings we start by
testing the performance of static cepstrum only with no compen-
sation, with spectral subtraction and with PMC (Table 1). Results
are reported in digit accuracy. A small improvement over the base-
line can be observed for spectral subtraction, whereas with PMC
the performance is drastically improved. Also notice that PMC is
superior to spectral subtraction at all SNR, and it is particularly
good at low SNR (Table 2). This confirms our theoretical finding
that PMC is always superior to spectral subtraction, but also that
the region in which PMC performs better than spectral subtraction
widens as the SNR decreases (see Figure 2). Also notice that the
result obtained with PMC (79.32%) is very high for a very simple
front-end based on static features only.

To improve the significance of our study, we test the perfor-
mance with dynamic coefficients. Table 3 shows results for static
MFCC plus first derivatives: both baseline and spectral subtraction
results improve but are still far from PMC. A small degradation is
observed for PMC (compared to the PMC results with static fea-
tures only) if only the static features are compensated (PMC(s))
but a clear improvement is observed when both static and dynamic
features are compensated (PMC(s,d)) as indicated in [2]. Finally
table 4 reports the performance with first and second derivatives
MFCC with PMC applied to all coefficients. The compensation
of the second derivatives is performed by disregarding all terms
that depend on second order statistics, which are difficult to esti-
mate, as indicated in [6]. We notice that results for both the sim-
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Compensation A B C Avg.

NONE 47.29 42.57 59.58 47.86
SS 58.38 54.58 69.94 59.17
PMC(s) 77.83 79.38 76.67 78.22
PMC(s,d) 83.54 83.86 83.05 83.57

Table 3. Comparison of spectral subtraction and PMC results for
static plus first derivatives.

ple back-end (8 gaussians per mixture) and the complex back-end
(16 gaussians per mixture) are close to the state of the art [4, 5].
This is surprising, since the noise estimation and the front-end used
are very simple, and because neither a voice activity detector nor
frame-dropping is used.

Compensation A B C Avg.

PMC(s,d,dd), 8G 86.90 86.29 86.33 86.54
PMC(s,d,dd), 16G 87.81 86.55 87.72 87.29

Table 4. PMC results for static plus first and second derivatives,
for 8 and 16 gaussians per mixture.

5. DISCUSSION

Strictly speaking, our noise sensitivity analysis applies only to
spectral subtraction and PMC for static cepstral features based on
the log-compression function. Indeed the logarithm makes it pos-
sible to compare cepstral distances in the � � � � �

plane, thanks to a
closed form solution which would be difficult to derive for other
compression functions. Our theoretical and experimental results
show that PMC is superior to spectral subtraction in dealing with
additive noise. However, it is our intuition that a general form of
the analysis may be derived to show that operating in the model
space provides lower sensitivity to noise estimation error than op-
erating in the signal space, independently of the specific method
used. This is unfortunately far from being formally proved. How-
ever, we tested other well-known techniques for signal-based com-
pensation, in the same settings used to compare spectral subtrac-
tion and PMC, to see if we could find some signal-based method
that could outperform PMC.

Table 5 reports results for minimum-square-error filtering
(MMSE) [8], and for codebook dependent cepstral normalization
(CDCN) [9]. To model the clean speech in CDCN we use a 64
gaussian components mixture model trained on the same Aurora2
clean training set. We also combine the previous methods with
cepstral mean normalization (CMN) (which always provides good
improvements but cannot be used with PMC). The best results for
signal-based methods are obtained when combining CDCN with
CMN. However notice that CDCN/CMN results still lag behind
PMC results by 12% absolute. Also notice that CDCN is an hy-
brid model and signal compensation method. This is just another
indication that model-based methods have a performance advan-
tage over signal-based methods.

Compensation NONE CMN

NONE 47.86 69.12
MMSE 53.17 67.19

SS 62.96 71.48
CDCN 72.90 74.15

Table 5. Average results over test conditions for different signal-
based techniques for static plus first and second derivatives.

6. CONCLUSION

We presented a noise sensitivity analysis of spectral subtraction
and PMC. Results from this analysis indicate that PMC is always
superior to spectral subtraction because it is less sensitive to noise
estimation errors. This is a direct consequence of the properties
of the log-compression used in the cepstrum computation. Ex-
perimental results on Aurora2 confirm our theoretical findings.
Our Aurora2 results with PMC using simple MFCC front-end
and noise estimates are close to the best results obtained on this
database with very complex signal processing schemes.
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