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ABSTRACT 

Multivariate Gaussian based speech compensation or 
mapping has been developed to reduce the mismatch 
between training and deployment conditions for robust 
speech recognition. The acoustic mapping procedure can 
be formulated as a feature space adaptation where input 
noisy signal is transformed by a multivariate Gaussian 
network. We propose a novel algorithm to update the 
network parameters based on minimizing the Kullback-
Leibler distance between the core recognizer’s acoustic 
model and transformed features. It is designed to achieve 
optimal overall system performance rather than MMSE 
on a specific feature domain. An online stochastic 
gradient descent learning rule is derived. We evaluate the 
performance of the new algorithm using JRTk Broadcast 
news system on a distance-talking speech corpus and 
compare its performance with that of previous MMSE 
based approaches. The experiments show the KL based 
approach is more effective for a large vocabulary 
continuous speech recognition (LVCSR) system. 

1. INTRODUCTION 

Automatic speech recognition systems attain high 
performance for close-talking applications. However, they 
degrade significantly in adverse distant-talking 
environment. The reason is the mismatch between 
training and deploying condition caused by room 
reverberation and environmental noise. Two major 
classes of approaches, model domain and feature-domain 
adaptation have been studied to address the problem. 
Model domain adaptation (e.g. MLLR [1]) directly 
modifies the recognizer’s HMM parameters to match 
statistics of the received sensor signal. It is 
computationally costly for a LVCSR system (more than 
100,000 Gaussians in our setup). Feature domain 
adaptation aims at compensating the speech feature 
distortion due to the interfering noise. It is simpler and 
computational affordable. 

In this paper, we introduce a novel optimized feature 
adaptation measure to increase the robustness of an 
LVCSR system. Our approach assumes a mixture of 
multivariate Gaussian (GMM) acoustic model to 
represent received speech. A family of multivariate 
Gaussian based feature compensation techniques have 
been developed, such as RATZ [2], and SPLICE[3]. They 
are designed to minimize the mean square error (MMSE) 
between processed ASR feature computed from distorted 
speech and clean speech. The new feature adaptation 
algorithm KLFA that we propose is based on minimum 
Kullbak-Leibler distance instead. One main advantage is 
the optimization object function is defined based on the 
core recognizer’s HMM output probability as opposed to 
relying on the less precise general acoustic model. 
Therefore, the learning process takes full advantage of the 
feedback from the system output, and leads to optimal 
overall performance. Although our multivariate Gaussian 
network is applied on a frame-by-frame basis, it can take 
into account the correlation effects of the neighbor 
feature, since the parameter learning process is affected 
by the core recognizer’s time delay linear transform. The 
effectiveness of the proposed algorithm is demonstrated 
in our LVCSR experiments, and it is shown to be 
consistently superior to previous MMSE based approach. 

In the remaining of this paper, we will describe the 
procedure of multivariate Gaussian based feature 
adaptation; then, the proposed minimum KL distance 
estimation based KLFA algorithm is presented; and 
finally, KLFA and previous techniques will be evaluated 
and compared using LVCSR system with additive noisy 
speech and real distant-talking speech. 

2. MULTIVARIATE-GAUSSIAN-BASED 
COMPENSATION 

In distant-talking environment, clean speech spectral 
coefficient x is filtered by a room channel h and corrupted 
by additive stationary background noise n:

linlinlinlin nhxy +⋅=    (2.1) 

where y is the corresponding noisy speech spectral 
coefficient. In log-spectral domain, the relation becomes 
non-linear and can be expressed as: 
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)1log( hxnehxy −−+++=    (2.2) 

We assume the probability density function (PDF) of 
log-spectra clean speech p(x) to be a mixture of 
multivariate Gaussians: 
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where p[k], µk and Ck represent respectively the a prior
probabilities, mean vector and covariance matrix of each 
multivariate Gaussian element k. These parameters are 
determined by using traditional maximum likelihood 
methods from the training dataset. 

We further assume the PDF of the corresponding log-
spectral noisy speech p(y) is a mixture of multivariate 
Gaussians as well and the effects of the environment on 
the statistics of clean speech can be approximated as 
additive compensations for mean vectors and covariance 
matrices. Various methods can be used to estimate the 
parameter of p(y) given p(x), such as, vector Taylor series 
(VTS) and parallel model combination (PMC). When 
stereo recordings for both the clean and noisy speech data 
are available as in RATZ, p(y) can be directly estimated 
by traditional EM algorithm from the training dataset. 
Knowing the noisy speech model p(y), for one given 
mixture component k, the estimate of clean speech x has 
the form 

kk ryx +⋅= αˆ      (2.4) 

α is an uncertainty weight, and usually set to 1; rk is the 
correction vector, and can be learned from noisy speech 
model. In the case of stereo recording is available, the 
MMSE estimation of rk is computed as: 
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where the summation is over all frames of the stereo 
training data. 
Once the parameters of the distribution of noise speech 
and the corrections vector codebook are obtained, MMSE 
estimator is used again to calculate the clean speech given 
the observed noisy speech vector y.
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The posterior probability is computed using the mixture 
of Gaussian model for input noise speech feature.  

In summary, the algorithm works in three stages: 
estimation of the statistics of noisy speech, estimation of 
the correction vector codebook and compensation of noisy 
speech. The acoustic feature compensation process can be 
formulated as a one-layer network consisted of Gaussian 
nodes in the GMM model and a correction vector 
codebook. The parameters of this network are trained to 
maximize the GMM output probability and minimize the 

mean square error between the clean speech and 
compensated noisy speech. The transformation performed 
is a shift by the sum of all correction vector weighted by 
P(k|y).

Although it is possible to directly take recognizer’s 
speech acoustic model as the general acoustic model, in 
practice, for a LVCSR system, we have to train an 
independent smaller GMM model to avoid the 
complicated ASR feature and decrease the amount of 
parameters. Using a secondary acoustic model requires 
much less adaptation data. 

3. MINIMUM KULLLBACK-LEIBLER DISTANCE 
ESTIMATION 

Generalizing the multivariate Gaussian network as a 
transforming function g(x), we pass a n-dimension input 
random variable x through g(x) to give a n-dimension 
output variable y. The PDF of y, py(y), can be written as a 
function of the PDF of the input, px(x),

||

)(
)(

J

xp
yp x

y =     (3.1) 

where |J| is the absolute value of the Jacobian of the 
transformation. The Jacobian is the determinant of the 
matrix of partial derivatives: 
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In the case of multivariate Gaussian network, the 
transform parameters include mean vectors µk, covariance 
matrices Ck, correction vector rk, and uncertainty weight 
α, denoted collectively as W: 

},,,,,,,,,{ 111 αµµ KKK rrCCW LLL=   (3.3) 

An error function must be defined first in order to 
estimate the transform parameters. Instead of using 
MMSE criterion, we choose the Kullback-Leibler (KL) 
distance function, which measures the difference between 
core recognizer’s HMM model λ and transformed feature 
y, defined by 
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Where the operator E performs averaging over the 
processed feature y. As is well known, the KL distance is 
always non-negative, and is zero only when p(y|λ)=p(y).

The error consists of two terms: the first is the 
negative log-likelihood of transformed feature y given the 
HMM model λ. The second term is the entropy of y. H(y)
is given by: 

∫−= dyypypyH yy )(log)()(    (3.5) 

substituting (3.1) into (3.5) gives 
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)]([log|]|[log)( xpEJEyH x−=   (3.6) 

The second term on the right (the entropy of observed 
feature of sensor signals x) may be considered to be 
unaffected by alterations of parameter W determining 
g(x).

Therefore in order to minimize the error by changing 
W, we need only concentrate on two terms, E[logp(y|λ)]
the average log probability of output feature, and, 
E[log|J|], the average log of how the input affects the 
output. Considering x’s the adaptation set to approximate 
the density px(x), this can be done by and deriving an 
online, stochastic gradient descent learning rule: 
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During the learning phrase, a convergence algorithm 
is used on training data to update the parameters in a 
manner to minimize the error function.  

1. Initialize the multivariate Gaussian 
network’s parameters using MMSE based 
method. 

2. Assign a core recognizer’s HMM state to 
each training frame (labeling) by carrying 
out HMM Viterbi forced alignment 
algorithm on given reference texts. The first 
term of the error function will be calculated 
according to the labels. 

3. For each iteration n, forward propagate 
training data through the transformation 
network and core recognizer to compute 
value of the error function; evaluate the 
partial derivatives for all parameters using 
back propagation; update the transform 
parameters by a learning rate η  as 

W

W
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4. Repeat step 3, until converging or 
completing a specific iteration number. 

The minimum KL distance estimation has interesting 
relations to other techniques. Maximum likelihood linear 
regression (MMLR) based feature space adaptation can be 
viewed as a special case of KLFA, where the g(x) is a 
global linear transformation matrix A, with the constraint 
|J|=|A|=1. So only the first term in (3.7) matters, which 
reduces the problem to maximum likelihood estimation. 
Another interesting case is its relation to information 
maximisation based independent component analysis, 
which does not assume any knowledge of probability 
distributions and the goal is to maximize entropy of y,
i.e., only the second term in (3.7) is considered. 

For KLFA with a multivariate Gaussian network 
topology, g(x) is a non-linear transformation defined on 
the framed based Mel-scale log-spectrum domain. State-
of-the-art LVCSR system employs temporal processing by 

combining adjacent frames of feature vectors and 
multiplying a Linear Discriminant Analysis (LDA) 
transform matrix. Its process can be viewed as a Time 
Delay Network (TDN), which filter the time trajectories. 
During the descent learning, the temporal processing is 
automatically incorporated through the LDA matrix and 
affects the learning of parameters W. Thus the network 
takes into account of adjacent frames. The feature 
adaptation network topology is shown in Figure. 1.  
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Figure 1. Feature adaptation networks topology 

4. SPEECH RECOGNITION EXPERIMENTS 

LVCSR experiments are carried out to evaluate KLFA 
algorithm using both simulated additive noisy speech and 
real distant-talking speech. The results are compared with 
MMSE based multivariate Gaussian compensation 
RATZ, MLLR based feature space adaptation MLLR-FA 
and a retrained system built on mixing data of clean 
speech and distant-talking speech. 

4.1. Dataset and system 

4.1.1. Simulated noisy and real distant-talking speech 
A distant-talking speech corpus contains data collected in 
ISL Lab using a multi-channel sound card. The 16-bit 
audio signal is sampled at 16kHz. During recording, the 
speaker wears a close microphone for reference clean 
speech signal. Two distant microphones are placed at 
about 6 feet away: one is directional and pointing towards 
the speaker, so that it can focus on the signal from the 
speaker’s direction; the other one is un-directional, so 
that it can detect the sound sources from all direction. 
Artificial additive noisy speech is also simulated by 
adding the recorded background noise to close-talking 
speech at different SNR, specifically, 10dB and 5dB. 
Speakers read articles chosen at random from a collection 
of News-hour database. A training set has 3-hour speech 
in total including both directional and unidirectional 
distant data. It could be used for retraining baseline 
system. A test set includes over 600 words articles by one 
male speaker and one female speaker. An adaptation set 
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includes 3 minutes speech of the same speakers with 
given reference texts. 

4.1.2. JRTk Broadcast News baseline system 
Our HMM LVCSR baseline system is trained on 
Broadcast News (BN) corpus using JRTk [4]. The core 
recognizer deploys a tri-phone acoustic model and has 
over 100K Gaussians. Speech signal is windowed with a 
16-ms Hamming window every 10 ms. After Vocal Tract 
Length Normalization (VTLN), log-spectrum is 
calculated and averaged into 30 triangular bins arranged 
at equal Mel frequency intervals. A follow-up LDA 
matrix is applied on a 7-frame context window and 
reduces feature dimensionality to 42. The advantage of 
using LDA transform instead of DCT transform is 
demonstrated in [4]. Mean Normalization is applied at 
the final step. The system has a vocabulary size of 40K 
and a tri-gram language model trained using the 
Broadcast News corpus. Word error rate of the baseline 
system is 17.6% on close-talking speech. 

4.2. Experimental Results 

Table 1. WER for different noise conditions using 
various types of algorithms 

Various approaches are implemented for comparison. 
RATZ is an MMSE based multivariate Gaussian 
adaptation. Its general GMM acoustic model and 
correction vector codebook are trained using the stereo 
recording in the adaptation set. Supervised MLLR based 
feature space adaptation (MLLR-FA) is a popular 
technique. A 42-dimenstion LDA feature global linear 
transformation matrix is derived on the adaptation set 
without using stereo recording. The accurate HMM state 
path is calculated according to reference texts by Viterbi 

forced alignment. KLAM is performed under the same 
conditions as in MLLR-FA. It has the exactly same 
mapping network structure as RATZ. The GMM network 
has 100 Gaussians with diagonal covariance matrix and 
100 correction vectors. The input and output are 30-
dimension Mel-scale log-spectral coefficients. Some 
simplification is used to speed up KLFA computation. 
Only the Gaussian component with the highest 
probability is considered during the mapping process, and 
then the computation of |J| could be simplified by 
ignoring the off-diagonal elements. The retrained system 
is built by using data from both clean speech training set 
and 3 hour distant-talking speech training set. Its WER 
for the close-talking speech increases to 22.8%. 

The experiment results for these approaches under 
different condition are summarized in Table 1. It can be 
seen that KLFA algorithm performs better than all of the 
previous adaptation algorithms and is comparable to 
retrained system of mixing data. 

5. DISCUSSIONS AND CONCLUSION 

Experiments show that the proposed KL distance based 
error function is more effective for LVCSR system and 
outperforms the previous approaches. KLFA has the 
several advantages for a LCVSR system. First, although it 
use a secondary acoustic model, the estimation criterion is 
based on feedback from the core recognizer, which is a 
more reliable to yield the best overall system performance 
than the MMSE based optimization. Second, it only 
requires an accurate HMM state path alignment of 
reference texts, and thus can work without the use of 
stereo data. Third, with the time-delay LDA transform, it 
takes account correlation effects of neighbor frames. Last, 
the nonlinear multivariate Gaussian adapting network is 
more powerful than a simple linear transform matrix as 
in MMLR-FA. 
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