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ABSTRACT
We present a back-end solution developed at Texas Instruments
for noise robust speech recognition. The solution consists of three
techniques: 1) a joint additive and convolutive noise compensation
(JAC) which adapts speech acoustic models, 2) an enhanced chan-
nel estimation procedure which extends JAC performance towards
lower SNR ranges, and 3) an N-pass decoding algorithm. The per-
formance of the proposed back-end is evaluated on the Aurora-2
database. With 20% less model parameters and without the need
for second order derivative of the recognition features, the perfor-
mance of the proposed solution is 91.86%, which outperforms that
of the ETSI Advanced Front-End standard (88.19%) by more than
30% relative word error rate reduction.

1. INTRODUCTION

A speech recognizer trained on clean speech data and operating in
different environments has lower performance due to at least two
distortion sources [1]: background noise and microphone changes.
Handling simultaneously the two is critical to the performance of
the recognizer.

Many front-end solutions, e.g. [2, 3], have been developed
and have shown promising results for connected digit recognition
applications in very noisy environments. For instance, methods
such as the ETSI advanced DSR front-end [3] handles both chan-
nel distortion and background noise. These techniques do not re-
quire noisy training data. To be effective in noise reduction, they
typically require an accurate instantaneous estimate of the noise
spectrum.

Alternative solutions consist, instead, of modifying the back-
end of the recognizer to compensate for the acoustic and chan-
nel mismatch between the training and recognition environments.
More specifically, in the acoustic model space, a convolutive (e.g.
channel) component and an additive (e.g. background noise) com-
ponent can be introduced to model the two distortion sources [4,
5, 6, 7, 8, 9]. The effect of the two distortions introduces in the
log spectral domain non-linear parameter changes, which can be
approximated by linear equations [10, 11].

In this paper, we present an extension of a framework recently
developed at TEXAS INSTRUMENTS, JAC (Joint compensation
of Additive and Convolutive distortions), that handles simultane-
ously both background noise and channel distortions for speaker-
independent speech recognition [9]. Performance of the novel
back-end solutions over the Aurora-2 database is analyzed.

∗Part of the work was performed while the author was a summer intern
at TEXAS INSTRUMENTS.

The original JAC algorithm [9] was developed and optimized
for mobile device speech recognition applications, for which typi-
cal SNR ranges are higher than the lowest SNRs in the artificially
created Aurora-2 database. For this evaluation, novel enhance-
ments to the JAC technique have been developed, including mak-
ing the compensation system robust to large channel mismatches
and low SNR signals, as well performing N-pass recognition. Such
enhancements contributed significantly to extending performance
robustness over wider range of noise and channel conditions im-
posed by the Aurora-2 framework. The new scheme is referred to
as Enhanced-JAC or E-JAC.

2. BACK-END MODEL COMPENSATION

2.1. Joint additive and convolutive noise compensation

A speech signal x(n) can only be observed in a given acoustic en-
vironment. An acoustic environment can be modelled by a back-
ground noise b′(n) and a distortion channel h(n). For typical
mobile speech recognition, b′(n) consists, for instance, of office
noise, vehicle engine or road noise, and h(n) consists of the mi-
crophone type or its relative position to the speaker. Let y(n) be
the speech observed in the environment involving b′(n) and h(n):
y(n) = (x(n) + b′(n)) ∗ h(n). In typical speech recognition ap-
plications, b′(n) cannot be measured directly. What is available is
b′(n) ∗ h(n). Let b(n) = b′(n) ∗ h(n), our model of distorted
speech becomes:

y(n) = x(n) ∗ h(n) + b(n) (1)

or, in the power spectral domain,

Y(k) = X(k)H(k) + B(k). (2)

Representing the above quantities in logarithmic scale, we have:

Y
l(k) = g(Xl

,H
l
,B

l)(k) (3)
�
= log(exp(Xl(k) + H

l(k)) + exp(Bl(k))) (4)

Assuming the log-normal distribution [12] and ignoring the vari-
ance, we have, in the acoustic model space,

E[Yl]
�
= m̂

l = g(ml
,H

l
, B

l) (5)

where ml is the original Gaussian mean vector and m̂l is the Gaus-
sian mean vector compensated for the distortions caused by chan-
nel Hl and environment noise Bl.
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2.2. Estimation of channel and noise components

Our goal is to derive the Hidden Markov Models (HMMs) of Y,
the speech signal under both additive noise and convolutive distor-
tions. The key problem is to obtain an estimate of the channel Hl

and noise Bl. We assume that some speech data recorded in the
noisy environment is available, and that the starting HMM models
for X are trained on clean speech in the feature space.

Applying the Expectation-Maximization (EM) procedure [13],
it can be shown [9, 14] that Hl and Bl are given by the solution to
the equation

u(Hl
,B

l) =
X

j∈Ωs

X
k∈Ωm

RX
r=1

TrX
t=1

γ
r
t (j, k) (6)

·

n
g(ml

j,k,H
l
, B

l) −DFT (or
t )

o
= 0,

where γr
t (j, k) is the probability of being in state j with mixing

component k at time t given utterance r, and or
t is the observation

feature vector at time t for utterance r.

2.2.1. Estimation of noise component

Eq. 6 can be used to solve both Hl and Bl. However, in this paper,
we assume Bl to be stationary, and use the first P non-speech
frames as an estimate of Bl. We calculate an estimate of noise in
the log domain B̂l as the average of the P noise frames in the log
domain

B̂l =
1

P

PX
t=1

DFT (yt). (7)

2.2.2. Solving channel equation

To solve Hl for u(Hl,Bl = B̂l) = 0, we use Newton’s method,
which has interesting convergence property for on-line estimation
of the parameters. The method is iterative, which gives a new
estimate Hl

[i+1], at iteration i + 1, of Hl using [9]

H
l
[i+1] = H

l
[i] −

u(Hl
[i], B̂

l)

u′(Hl
[i], B̂

l)
, (8)

where u′(Hl, B̂l) is the derivative of u(Hl, B̂l) with respect to
channel Hl. As initial condition for Eq. 8, we can set Hl

[0] = 0.

2.2.3. Compensation for time derivatives

The distortion caused by channel and noise also affects the dis-
tribution of dynamic (e.g. time derivative of) MFCC coefficients.
According to definition, the compensated time derivative of cep-
stral coefficients Ẏc is the time derivative of compensated cepstral
coefficients Yc [7]. It can be shown [7, 14] that both first and
second order time derivatives are respectively a function of

η(k) = exp(Hl(k))ψ(k), (9)

where ψ(k) =
exp(Xl(k))

exp(Bl(k))
is the SNR in the linear scale at the

frequency bin k.

2.3. Enhancements to JAC (E-JAC)

2.3.1. Introduction

While jointly estimating and compensating for additive (acoustic)
and convolutive (channel) noise allows for a better recognition per-
formance, special attention must be paid to low quality speech sig-
nals. When the SNR is too low or when the noise is highly non-
stationary, it becomes difficult to make a correct noise estimate B̂l.
In that case, the channel estimate Hl

[i+1] will reflect channel mis-
match and will suffer from residual additive noise. Since channel
estimates are made on an utterance basis using previous channel
estimates, the effect of an erroneous estimate can degrade recogni-
tion accuracy for subsequent utterances. A solution to this problem
consists of adding inertia to JAC channel estimate and to force the
amplitude of channel estimates to be within a certain range.

2.3.2. Inertia added to JAC channel estimation

At the beginning of a recognition task in a particular noise and
channel condition, the recognizer may be suddenly exposed to a
new type of background noise and microphone. It may be hard
for the JAC algorithm to immediately give a good estimate of
the channel after one utterance, since not enough statistics have
been collected to represent the channel. A solution consists of
separating the running channel estimate Hl

[i+1] from the channel

estimate H̄l
[i+1] used for model compensation (Eq. 5). H̄l

[i+1]

approaches Hl
[i+1] gradually, as more channel statistics are col-

lected with the increasing number q of observed utterances. After
an SNR-dependent Q utterances have been recognized, we have
H̄l

[i+1] = Hl
[i+1]. When q < Q, H̄l

[i+1] is given by

H̄
l
[i+1] = H̄

l
[i] +

q

Q
(Hl

[i+1] − H̄
l
[i]). (10)

2.3.3. Limits on JAC channel estimation

Despite the additional robustness provided by the new iterative
procedure of Eq. 10, the channel estimate can still be inaccurate,
especially with sudden exposure to new noise and channel condi-
tions at low SNR. In this case, it may be beneficial to limit the
amplitudes of the channel estimate that can be applied by JAC.
This is done by forcing the amplitudes of the channel estimates to
be within a certain range, as specified by

H
l
[i+1] = max(min(Hl

[i+1], JAC LIM),−JAC LIM) (11)

which guarantees that Hl
[i+1] ∈ [−JAC LIM, JAC LIM]. Note

that if JAC LIM = 0, we have Hl
[0] = 0, and only background

noise compensation can be applied.

2.4. Two-pass decoding

The JAC algorithm finds the channel estimates that maximize the
likelihood of observing the sequence of feature vectors given a
segmentation provided by the Viterbi decoding. Once we obtain
a better estimate of the channel, we may want to analyze how the
new parameters may affect the sentence segmentation and conse-
quently the channel estimation. In order to do this, we simply
perform another iteration of the recognition back-end algorithm.
This operation can be repeated for as many passes as desired.
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3. EVALUATION OVER THE AURORA-2 DATABASE

3.1. Experimental conditions

We evaluate the performance of the proposed Enhanced-JAC back-
end algorithm (E-JAC) on the Aurora-2 database for the purpose
of benchmarking it with the new ETSI Advanced Front-End (AFE)
standard [3].

We used the standard Aurora-2 testing procedure, which av-
erages out recognition performance over 10 different noise condi-
tions (two with channel mismatch in Test C) at 5 different SNR
levels (20dB, 15dB, 10dB, 5dB and 0dB). Since the clean data and
the data at -5dB are not used in the average performance evalua-
tion, we have not tested our algorithm at those noise levels.

As a reminder, performance of AFE standard on the Aurora-2
database is established using the following configuration: a 39-
dimensional feature vector (13 AFE features with 1st and 2nd order
derivative) extracted every 10 ms and 16 states word HMM mod-
els with 20 Gaussian mixtures per state. According to the official
baseline for Eurospeech 2003, the average performance of the AFE
standard over the entire database is 88.19%, which breaks down in
the following percentages for each SNR condition, from 20dB to
0dB: 98.92%, 97.78%, 94.61%, 85.99% and 63.66%.

In the evaluation of our solution, we move slightly away from
the feature vector being used, while keeping the HMM model topol-
ogy the same. We use a 32-dimensional feature vector, which
corresponds to a 16 dimensional MFCC vector and its 1st order
derivative only. For memory/benefit ratio concerns, TI’s low foot-
print solution typically does not use second order derivative. While
better results could obtained by using the second order derivative,
it was decided not to use the acceleration features. Note that this
means that our system operates on fewer features (about 20% less)
than the AFE standard. In the experiments, a speech model vari-
ance adjustment is also applied.

3.2. Comparison between one pass and two pass decoding

The improvement in performance provided by the two-pass decod-
ing method can be measured by analyzing the average recognition
increase given the number of passes.

Table 1 summarizes the average (over 10 noise conditions)
recognition performance on Aurora-2 database with E-JAC (en-
hanced JAC) using MFCCs, for each SNR level with respect to
the number of passes. Increasing the number of passes consis-
tently improves recognition, with more pronounced gains for low
SNR conditions. On average, two passes recognition provides a
5% relative error rate reduction. We did not observe significant
recognition improvements beyond two passes.

SNR 20 dB 15 dB 10 dB 5 dB 0 dB MEAN

1 pass 98.95 98.16 95.98 90.44 73.82 91.47
2 pass 99.00 98.30 96.30 91.07 74.63 91.86

Table 1. Recognition performance over Aurora-2 database for
each SNR as a function of the number of passes.

3.3. Performance of E-JAC back-end

Table-2(a) summarizes the performance of our back-end solution
on the Aurora-2 database using E-JAC with 2 passes. It can be seen

that we obtain an average performance level of 91.86%, which cor-
responds to a 31% relative improvement over AFE (88.19%). We
believe that such performance level obtained using clean training is
in line with some of the best front-end processing solutions using
multi-conditional training.

3.4. Improvements of E-JAC over AFE

For a better reading of the results, Table-2(b) shows relative per-
centage improvements of E-JAC over the AFE standard. Several
trends can be observed. First, on average, the E-JAC solution
provides improvements over all noise conditions and SNR level.
Second, improvements are more pronounced for low SNR signals.
The smaller improvements for cleaner signal are explained by the
fact that we are not using the 2nd order derivatives of the features.
Third, improvements are larger (37%) for the test set C, with chan-
nel mismatch, which suggests that JAC has been able to accurately
estimate the channel. In fact, absolute results show that there is no
more degradation in performance between test C over test A and B,
indicating that the channel mismatch in Aurora-2 is no longer an
issue. Fourth, note that the four noise types for which our improve-
ments over AFE are less pronounced (less than 20%) are Station,
Babble, Restaurant and Airport, which are the three least station-
ary noises.

3.5. Combination of AFE and E-JAC

Given the performance and quality of both the Advanced Front-
End and the E-JAC solutions, we decided to establish the perfor-
mance level with a combined AFE front-end and E-JAC speech
recognizer. We use AFE front-end and E-JAC back-end with 32
dimensional feature vector (16 static and 16 first order dynamic
coefficients). We observe that the average performance of the com-
bined system over all 50 noise conditions is 90.25%. This results
indicates that while the addition of the E-JAC back-end solution
could improve AFE performance by 17% relative, its performance
was not in this case nearly as good as that of a back-end solution
only approach. The reason why adding AFE does not help can
be attributed to several factors, including: 1) the adaptive chan-
nel equalization in AFE may make the residual channel parame-
ter time-varying, which makes it more difficult for the E-JAC al-
gorithm to produce accurate channel estimation, and 2) the non-
linearity of speech signal introduced by the spectral subtraction as
used in AFE, especially in low SNR conditions, may affect ad-
versely the speech quality.

4. CONCLUSIONS

The proposed E-JAC back-end compensation technique identifies
two log-domain components from incoming speech signal: one for
the channel or microphone distortion (convolutive), and the other
for the background noise (additive). Superior performance can be
obtained since a more accurate channel estimation is achieved by
embedding HMM in the channel estimation process.

Experimental results show that E-JAC, although simple, is ef-
ficient in improving speaker-independent recognition performance
on Aurora-2 database application task. With 20% less model pa-
rameter size, the method gives about 30% relative word error rate
reduction over ETSI AFE, to yield an average performance of
91.86%.
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(a)

Aurora 2: Clean training, multicondition testing – MFCC-OD, E-JAC
Test Set A Test Set B Test Set C

Subway Babble Car Exhibit Average Restaurant Street Airport Station Average SubwayM StreetM Average Average
20 dB 99.11 98.76 99.08 99.07 99.01% 99.03 98.73 99.25 99.29 99.08% 99.08 98.61 98.85% 99.00%
15 dB 98.74 98.19 98.66 98.40 98.50% 97.76 97.94 97.98 98.70 98.10% 98.53 98.07 98.30% 98.30%
10 dB 97.42 95.47 97.44 96.79 96.78% 94.88 95.62 95.59 96.79 95.72% 97.36 95.65 96.51% 96.30%
5 dB 93.37 88.57 94.39 90.81 91.79% 88.12 90.08 90.25 91.27 89.93% 93.21 90.66 91.94% 91.07%
0 dB 81.30 65.90 80.05 76.98 76.06% 68.50 73.25 75.66 74.45 72.97% 78.45 71.80 75.13% 74.63%
Average 93.99 89.38 93.92 92.41 92.43% 89.66 91.12 91.75 92.10 91.16% 93.33 90.96 92.14% 91.86%

(b)

Relative word error rate reduction (in %) of E-JAC with respect to ETSI’s AFE standard
Test Set A Test Set B Test Set C

Subway Babble Car Exhibit Average Restaurant Street Airport Station Average SubwayM StreetM Average Average

20 dB 25.83 -10.71 -6.98 18.42 6.64% -8.99 6.62 0.00 -9.23 -2.90% 33.33 6.08 19.71% 5.44%
15 dB 46.61 24.27 11.84 26.94 27.42% 17.04 19.84 -18.82 22.16 10.05% 42.35 25.77 34.06% 21.80%
10 dB 57.14 24.37 26.65 39.55 36.93% 10.33 25.26 -12.79 26.71 12.38% 58.88 36.03 47.45% 29.21%
5 dB 54.37 29.31 41.80 33.21 39.68% 30.16 25.08 20.28 25.32 25.21% 56.70 42.06 49.38% 35.83%
0 dB 45.56 21.65 30.78 33.20 32.80% 24.41 22.26 27.32 19.60 23.40% 46.37 30.76 38.56% 30.19%
Average 45.90 17.78 20.82 30.26 28.69% 14.59 19.81 3.20 16.91 13.63% 47.53 28.14 37.83% 24.49%

Table 2. (a) Performance of E-JAC back-end on the Aurora-2 database (clean training). (b) Relative percentage improvements of E-JAC
over the ETSI Advanced Front-End (AFE) DSR standard.
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