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ABSTRACT

Network-based speech recognition (NSR) using the conventional 

speech channel with the Enhanced Full Rate (EFR) or the 

Adaptive Multi-Rate (AMR) codec is a very attractive approach 

since no change to existing mobile phones is needed. However, 

NSR reveals a degrading performance due to both transmission 

channel errors and the speech encoding process in comparison 

with Distributed Speech Recognition (DSR), where speech 

features are efficiently coded and transmitted on a data channel. 

In this paper we focus on the degradation of the speech 

features caused by channel errors in an NSR system and propose 

methods to improve the quality of these features. Applying these 

methods, it turns out that the performance of an NSR system 

based on EFR coding is comparable to that based on DSR. 

1. INTRODUCTION 

The increasing development of cellular networks has thrown 

down a new challenge: the speech recognition in mobile devices 

that enables the access to voice activated services. These 

services can be implemented in a variety of conceptual solutions. 

A first approach could be to perform the speech recognition in 

the mobile device itself. Although this embedded solution can be 

feasible, its functionality is quite limited by hardware constraints 

and power consumption. It is therefore considered to be more 

efficient and practical to perform the recognition on a remote 

server. 1

In this scenario, there are two approaches. The first one, 

widely employed today, is known as Network-based Speech 
Recognition (NSR) [1]. NSR uses a full-duplex speech channel, 

with speech coding (for bit rate reduction) and channel coding 

(for error protection), to send the speech data to the remote 

server. The second one is referred to as Distributed Speech 
Recognition (DSR) [2]. In DSR, the speech recognition task is 

distributed between the local mobile device, which extracts and 

encodes the speech features, and the remote server, which 

performs the recognition itself. In this way, DSR avoids the 

speech coding step and the transmission is performed over a data 

channel, unlike in NSR. 

However, there are still some problems in the final 

deployment of DSR. The current handsets are not capable of 

carrying out feature extraction and it would be necessary to 

include new hardware in the device. In addition, for some types 
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of applications, it would be desirable to have the transmitted 

speech signal available just in case a further verification is 

required. Finally, although a standard has been established to 

ensure compatibility between the terminal and the remote 

recognizer [2], it does not cover the areas of data transmission or 

any higher level application protocols needed for the final 

implementation.  

The NSR approach avoids these problems by performing the 

recognition from the decoded speech. The Enhanced Full Rate 

(EFR) codec, the most widely used codec in GSM, can achieve 

very similar results to DSR with clean transmission [1,3]. 

However DSR outperforms it in the presence of channel errors. 

In this work, we analyze these errors and their effects on speech 

recognition (section 2) and propose some solutions for them 

(section 3). Finally, the conclusions of this work are summarized 

in section 4.  

2. EXPERIMENTAL FRAMEWORK 

In order to evaluate and compare the techniques proposed in this 

paper, the ETSI STQ-AURORA Project experimental 

framework was adopted [4]. The speech data has been extracted 

from clean sentences of the Aurora-2 database (connected digits 

spoken by American English speakers). Training is performed 

from a set of 8440 clean utterances and test is carried out over 

the clean sentences of set A, with 4004 utterances. 

The front-end used in this work is the one proposed in the 

ETSI standard [2]. It provides a 14-dimension feature vector 

containing 13 MFCCs (including the 0th order one) plus log-

energy. The recognizer is the one provided by Aurora and uses 

eleven 16-state continuous HMM word models, (plus silence and 

pause, that have 3 and 1 states, respectively) with 3 Gaussians 

per state (except silence, with 6 Gaussians per state). The 

recognition performance is measured in terms of word accuracy. 

Under the EFR scheme, the speech samples are transmitted 

using a full-duplex channel. These samples are coded and 

decoded according to GSM 6.60 standard [5]. Channel coding, 

decoding, error detection and correction and bad frame 

mitigation tasks are accomplished according to GSM 5.03 and 

GSM 6.61 [6,7]. On the other hand, under the DSR scheme, the 

speech features obtained from the front-end are quantized using 

a Split Vector Quantizer (SVQ) that groups them into pairs 

(MFCCs 1 and 2, MFCCs 3 and 4, ..., MFCC 0 and log-Energy). 

Each pair has its own codebook that is generated utilizing a 

weighted distance measure. The resulting bitstream is 

transmitted according to ETSI DSR standard through a data 

channel. After decoding, the error mitigation algorithm proposed 

in the DSR ETSI standard is applied. 
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The channel is simulated using the GSM error patterns (EPx, 

x=1,2,3) to corrupt the bit stream. These error patters are in 

AEG format and represent three channel conditions: EP1 (10dB 

C/I, good quality), EP2 (7dB C/I, medium quality) and EP3 

(4dB C/I, lower quality).  

3. ANALYSIS OF GSM-EFR CHANNEL ERRORS 

When a speech frame reaches the receiver, it is decoded applying 

error correction and checking the various protection mechanisms 

included in the frame. As a result of this process, a Bad Frame 

Indicator (BFI) will be enabled if a transmission error is detected 

in that frame. Due to the discriminative treatment of the frames 

by the decoder, we should distinguish between different types of 

noises derived from the channel noise. 

3.1. Bad frame noise and background noise 

If the BFI of a frame is enabled (BFI=1), that frame has been 

seriously damaged and its synthesis would be very unpleasant 

for a listener. For this reason, in order to improve the subjective 

perception of the signal, these frames are replaced by a 

repetition or extrapolation of the last received frame or frames. 

The GSM standard 6.61 does not impose any specific 

substitution and muting algorithm, however, it proposes an 

example which is usually the implemented one [7]. This

substitution is performed in such a way that the output level 

gradually becomes comfort noise. On the other hand, it can not 

be asserted that those frames whose BFI are not marked (BFI=0) 

are entirely correct, since the error protection is perceptually 

applied and all the speech parameters are not equally protected. 

In this sense, the signal transmitted with errors can present 

anomalies with regards to the clean transmitted signal, which 

would influence the recognition accuracy. 

In our study, we have designed two experiments intended for 

evaluating the effects of the aforementioned errors. We have 

tested the system performance in these situations: 

Background Noise. In this situation, we only take into 

account the noise generated by unmarked frames (BFI=0). 

The frames marked as no valid (BFI=1) are replaced with 

the corresponding valid frame. This valid frame is built up 

from the parameters obtained in a clean transmission. 

Bad Frame Noise. In this case, we only take into account 

the noise from frames with marked BFI. In order to do this, 

all frames, except those whose BFI is enabled, are replaced 

with those obtained in a clean transmission. This avoids 

the presence of anomalies in unmarked BFI frames. 

Table 1 (cols 4 and 5) shows the results obtained from these two 

experiments together with those of DSR and EFR (cols 2 and 3), 

under different channel conditions. As it can be seen, the Bad 
frame noise is mainly the responsible for the performance 

degradation in noisy channel conditions, while the Background 
noise has a negligible importance. Due to the bursty nature of 

the wireless channel (in spite of the interleaving introduced in 

the encoder) a high proportion of bad frames appear 

consecutively, that is, constituting bursts. The recognition 

accuracy in accordance with the length (l) of the bursts on EP3 

condition is shown in figure 1. When l<1, there are no bad 

frames (a burst involves at least 1 bad frame), and we obtain the 

same results as in clean conditions.   In the other extreme,  when  
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Clean 99.04 98.70 - - - - 

EP1 99.04 98.44 98.50 98.61 98.44 98.68 

EP2 98.95 96.91 98.31 97.53 97.73 98.28 

EP3 93.41 84.48 98.22 85.80 93.54 90.47 

Table 1. Word accuracy in recognition with each kind of noise. 
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Figure 1. Word accuracy versus burst length (l) on EP3. 

the length is less than , all bad frames are present and we 

obtain the same results as with the EP3 condition. As it can be 

observed, the incremental accuracy reduction is negligible for 

burst lengths bigger than five, due to the small frequency of 

appearance of these bursts. 

3.2. Codec memory noise 

Analyzing the speech samples obtained in a noisy transmission, 

we can observe a degradation of the signal corresponding to 

correct frames after a burst (bad frame noise). This is due to the 

memory of the CELP type codec. In this sense, although several 

frames after the burst had been received without errors, the 

resulting signal would be degraded due to the previous erroneous 

frames. This degradation constitutes what we call Memory noise.

In the same way as in the previous experiments, we can 

isolate the effects of the bad frame noise from the memory noise. 

In this case, we previously eliminate the background noise and 

operate at a different level substituting speech samples instead of 

speech parameters. We consider two new experiments: 

Bad Frame Isolated Noise. In this case, we isolated the 

alterations caused by the bursts, not by the associated 

memory effect. To this end, speech samples belonging to 

good frames (BFI=0) are replaced with the corresponding 

correct speech samples. 

Memory Noise. In this experiment, the noise generated 

after a burst by the memory of the codec is isolated. For 

this purpose, speech samples belonging to bad frames 

(BFI=1) are replaced with the corresponding correct 

speech samples, leaving only the corruption corresponding 

to memory noise. 
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Table 1 (cols 6 and 7) shows the results of both experiments. As 

it can be seen, the memory noise has an important responsibility 

for the reduction of the recognition accuracy. This confirms the 

influence of a burst beyond its limit in terms of bad frames. 

4. IMPROVING ACCURACY OVER EFR 

Since our goal is the recognition of the speech degraded by 

channel errors, we will try to compensate the speech features 

used for recognition rather than the speech signal. However, 

there are differences of size and shift between the windows of 

the EFR codec and the Aurora feature extractor. This difficulty 

can be avoided with a mapping function which relates each bad 

EFR frame with a bad feature vector. In our work, this function 

is defined as: 

1
1 1) 1

( ) 2 2

0 ;

map

n n
BFI or BFI

F n

otherwise

 (1)  

where n is the time index of a given feature vector and BFI(m) is 

the bad frame indicator of frame m (both starting from 0). 

Fmap(n) is 0 when feature vector n is received and equal to 1 

when feature vector n is bad (see figure 2).  

4.1. Burst reconstruction 

Whenever an error burst appears, frames with BFI enabled are 

considered as lost frames in GSM 6.61 [5]. In this situation, 

there is no information about the original signal. Then, the 

corresponding bad feature vectors (according to the mapping 

function) are lost and must be reconstructed. This reconstruction 

can be accomplished from the last and the first vectors received 

before and after the burst, respectively, by means of a simple 

linear interpolation: 

( ) ( )
ˆ ( ) ( ) e s

s s e

e s

s

t t
t t t t t

t t
t t

x x
x x  (2) 

where ˆ ( )tx  is the estimated feature vector at time t, x(te) is the 

first vector after the burst and x(ts) is the last vector before the 

burst. Although this is a very simple technique, an important 

improvement over EFR can be obtained as shown in table 2 (col 

4, EFR interpolation). 

4.2. Memory noise compensation 

By contrast to burst errors, where there are lost frames, the 

memory noise only involves signal degradation. In a first 

approach, this noise can be considered similar to acoustic noise, 

whereby, under this assumption, it is feasible to apply an 

acoustic noise compensation algorithm as FCDCN (Fixed 

Codeword-Dependent Cepstral Normalization) [8] to try to 

compensate the codec memory noise. FCDCN applies a 

correction based on simultaneously recorded noisy and clean 

 speech data (stereo data). This correction depends on the 

instantaneous SNR (Signal-to-Noise Ratio) of the input. 

Furthermore, for each codeword q, we should consider a 

different correction. It usually represents a quantization index 

for  the  input, relating  the speech  vectors  of  the input and  the  

Figure 2. Mapping function between GSM frames and speech 
feature vectors.

correction factor to apply. In this way, the degraded speech 

vectors are compensated as follows: 

ˆ ,SNR qx = x' + r     (3) 

where x̂ is the estimated vector, x’ is the noisy vector and r is 

the correction vector for a given SNR and a given codeword q.  

The memory noise depends on the previous burst error: the 

longer the burst length, the higher the noise level. Furthermore, 

it decreases as good frames are received. Therefore, the 

instantaneous SNR of the noisy feature vector depends on the 

previous burst length and the distance to it. Due to this 

dependence, a different FCDCN correction should be applied for 

each burst length and time interval after it, modifying equation 

(3) to: 

ˆ , ,l d qx = x' + r     (4) 

where l is the length of the previous burst and d is the distance 

from the current noisy vector x’ to the first vector after the burst 

(measured in number of vectors).  

In order to reduce the computational burden and memory 

requirements, the maximum burst length can be limited to l=5,
since the reduction on accuracy is negligible for longer burst 

lengths (figure 1). Furthermore, the maximum distance to the 

burst can be set on d=20 feature vectors after the burst. As far as 

we know, this is a safe limit since the correction factors at that 

distance are close to zero (no correction). 

On the other hand, the codewords are defined through the 

SVQ quantizer used by the Aurora front-end described on 

section 2. This involves working with feature pairs instead of 

feature vectors. In this way, each noisy feature vector is 

quantized giving seven indices or codewords. Each one selects 

the compensation factor for its corresponding feature pair. This 

gives the last modification on equation (3): 

ˆ ( , , ) ( )l d q q SVQp p' r p'   (5) 

where p̂  is the compensated feature pair while p’ is the noisy 

feature pair and q is the SVQ quantization index for p’.

Every feature vector received after a burst (affected by 

memory noise) is compensated until its distance to the previous 

burst is longer to 20 or a new burst appears. On the other hand, if 

the previous burst length is longer than 5, we reuse the 

correction factors applied on burst lengths equal to 5. 

Bad Frame 
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Finally, this algorithm requires stereo speech data in order to 

compute the compensation factors. The training database can be 

used to accomplish this objective. Simulating burst errors of 

same length during the transmission, we can build up as many 

stereo data as it is needed. Given M bursts with the same length 

l, each one ending at time tn (n=1,..,M), the correction factors at 

distance d are calculated as follows: 

1 1 5

0 20

1
, ,

n n

n

M

t d t d
n

t d

l

dq SVQ

l d q
M

r p p'

p'

  (6) 

where pt and p’t are the clean and noisy feature pairs at time t
(t=tn+d), respectively. 

The proposed adapted FCDCN for memory noise 

compensation can be used together with linear interpolation for 

burst reconstruction. Due to the fact that the burst reconstruction 

depends on the previous and next received vector, it must be 

applied after memory noise compensation. Table 2 shows the 

results obtained applying both algorithms (col 5, EFR Interp. & 
Adapted FCDCN). It can be seen that it outperforms EFR, 

approaching the DSR performance.  

4.3. Extension to codec noise 

The aforementioned correction factors were computed 

comparing noisy transmitted speech with clean transmitted 

encoded speech. However, we can also compensate the 

distortion introduced by the coding process by computing the 

correction pairs from non-encoded speech. In this way, memory 

and codec noise are compensated at the same time after every 

burst. Moreover, an additional set of correction pairs, r(q), can 

be computed comparing encoded and non-encoded speech. This 

set is applied over the feature vectors in the beginning, when 

there is no previous burst, and after the 20 vectors after a burst, 

compensating only the distortion introduced by the codec.  

Table 2 shows the results of this extension combined with 

linear interpolation for burst reconstruction (col 6, EFR Interp. 
& Adapted FCDCN (clean speech)). Extending in this way the 

algorithm, we can improve the recognition accuracy, obtaining a 

performance quite close to DSR one.  

5. CONCLUSIONS 

In this work, we have focused our study in the effect that 

trasmission channel errors have on a NSR system using the EFR 

speech codec. We have analyzed the impact of three different 

types of errors over the recognition system caused by an 

erroneous transmission: background noise, bad-frame isolated 

noise and codec memory noise. 

From this analysis, we have observed that the system 

degradation is mainly due to the two last error types. By means 

of a differentiated treatment of these errors, we have shown that 

the NSR approach can achieve results similar to DSR. 

Furthermore, the proposed algorithms do not have especial 

computational requirements and can be easily applied on real 

time. Besides, they are extensible to other CELP type codecs. 
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Clean 99,04 98,70 98,70 98,70 98,81 

EP1 99,04 98,44 98,43 98,46 98,64 

EP2 98,95 96,91 97,55 97,82 98,19 

EP3 93,41 84,48 90,76 94,04 94,04 

Table 2. Word accuracy (%) in recognition with the proposed 
enhancement algorithms. 

The main disadvantage of these algorithms is the necessity of the 

BFI flags. The mapping function requires these flags to 

discriminate between received and lost speech frames. This 

requires either direct access to the GSM bitstream or an 

algorithm capable of directly detecting bad frames from the 

speech samples. 

Finally, in the case of the AMR codec, the speech and 

channel encoding is modified in order to face the channel 

conditions. Although less affected by transmission channel 

errors, we will still have similar errors as the ones described in 

this paper. In AMR we would additionally have to consider the 

degradation introduced by the speech encoding process on the 

NSR system. Further work will address this problem. 

6. REFERENCES 

[1] T. Fingscheidt, S. Aalburg, S. Stan and C. Beaugeant, 

“Network-based vs. distributed speech recognition in adaptive 

multi-rate wireless systems”, ICSLP 2002, Denver, September 

2002.

[2] “ETSI ES 201108 Speech Processing, Transmission and 

Quality aspects; Distributed speech recognition; Front-end 

feature extraction algorithm; Compression algorithms”, ETSI 

Standard, 2000. 

[3] H.G. Hirsh, “The influence of speech coding on recognition 

performance in telecommunication networks”, ICSLP 2002, 

Denver, September 2002. 

[4] H.G. Hirsch and D. Pearce, “The AURORA experimental 

framework for the performance evaluation of speech recognition 

systems under noisy conditions”, ISCA ITRW ASR2000, Sept. 

2000.

[5] “ETSI EN 300 726. Enhanced Full Rate (EFR) speech 

transcoding”, ETSI Standard, 1999. 

[6]  “ETSI EN 300 909. Channel Coding”, ETSI Standard, 1999. 

[7]  “ETSI EN 300 727. Substitution and muting of lost frames 

for Enhanced Full Rate speech traffic channels”, ETSI Standard, 

1999.

[8] A. Acero, “Acoustical and Environmental Robustness in 

Automatic Speech Recognition“, Ph.D. Thesis, Dept. of 

Electrical and Computer Engineering, Carnegie Mellon Univ., 

1990.

I - 1024

➡ ➠


