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ABSTRACT

This paper investigates the effect of modeling sub-band correlation
for noisy speech recognition. Sub-band data streams are assumed
to be independent in many sub-band based speech recognition sys-
tems. However, the structure and operation of the human vocal
tract suggests this assumption is unrealistic. A novel method is
proposed to incorporate correlation into sub-band speech feature
streams. In this method, all possible combinations of sub-bands
are created and each combination is treated as a single frequency
band by calculating a single feature vector for it. The resulting
feature vectors capture information about every band in the com-
bination as well as the dependency across the bands. Experiments
conducted on the TIDigits database demonstrate significantly im-
proved robustness in comparison to an independent sub-band sys-
tem in the presence of both stationary and non-stationary noise.

1. INTRODUCTION

Recent studies have demonstrated the ability of sub-band speech
recognition systems to offer improved robustness compared to con-
ventional full-band models, particularly in the presence of fre-
quency selective noise (e.g., [1]–[4], [7]). This is due to their abil-
ity to isolate noise corruption within particular frequency bands by
splitting the frequency spectrum into sub-bands. Sub-band speech
recognition systems usually extract features from individual sub-
bands based on the assumption that sub-band data streams are in-
dependent. An examination of the structure and operation of the
human vocal tract however suggests this assumption is unrealistic.

Experiments based on independent sub-band features indicate
that ignoring correlation between sub-band feature streams causes
recognition performance to degrade quite rapidly as the number of
sub-bands increases. Figure 1 shows an example of experiments
conducted on the TIDigits database, using mel-frequency cepstral
coefficients (MFCCs) to model independent sub-bands. As the
number of sub-bands increases, the frequency range covered by
each sub-band becomes smaller and so provides less discrimina-
tive information. The lack of correlation between the smaller sub-
bands leads to poor recognition performance.

There may be two possible approaches to modeling correlation
between sub-band features. Firstly, correlation may be captured in
the acoustic modeling stage by using, for example, full-covariance
matrices between sub-band features [3] or full-combination neu-
ral nets [2][4]. Secondly, correlation may be captured in the fea-
ture extraction stage, by developing a new feature format. An
example of this is described in [5] to model correlation in sub-
band based speaker recognition. In that study, a highly redundant
sub-band architecture was employed whereby, from an overall set
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Fig. 1. String accuracy (%) versus number of sub-bands using
independent sub-band (ISB) features in clean conditions

of 24 filter-bank channels, every possible combination of 20 con-
secutive channels was created. A feature vector was calculated
for each combination and independent speaker recognition experi-
ments were performed on each of these feature vectors. No attempt
was made to fuse the independent decisions from each combina-
tion into a single overall decision.

In this paper, a new feature extraction approach to modeling
sub-band correlation is discussed. To isolate noise, we create all
possible combinations between the sub-bands, assuming there is at
least one combination containing all clean sub-bands. To capture
correlation between the sub-bands, we treat each of these combi-
nations as a single frequency band and calculate a single feature
vector for it. The obtained feature vector therefore captures infor-
mation about every band in the combination as well as the depen-
dency across the bands. It can be shown that the features described
in [5] are included as a subset in our new feature set.

2. MODELING SUB-BAND CORRELATION

The proposed method is based on a filter-bank cepstral analysis
approach. Traditional full-band speech recognition systems ex-
tract feature vectors by applying a Discrete Cosine Transformation
(DCT) across all the filter-bank energies (FBEs) together, obtain-
ing the full-band cepstral feature vector. Sub-band systems typ-
ically assume independence between sub-bands and extract fea-
ture vectors by applying the DCT within separate groups (i.e. sub-
bands) of FBEs. This obtains the respective cepstral feature vec-
tors, one for each sub-band, which are assumed to be independent
of each other in the acoustic modeling for speech recognition. We
call this the independent sub-band system.

This paper proposes to model sub-band correlation by apply-
ing the DCT to combinations of sub-bands taken as single bands.
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To illustrate this technique let us assume that for each frame of
speech there are 8 FBEs (f1f2f3f4f5f6f7f8) to be grouped uni-
formly into four sub-bands: Band 1 = (f1f2) , Band 2 = (f3f4),
Band 3 = (f5f6) and Band 4 = (f7f8) and that there is one band,
Band 2 say, which is corrupted by noise. Bands 1, 3 and 4, there-
fore, correspond to the clean bands that should be utilised for
recognition. Instead of processing these three bands independently,
they are grouped together into a single band (f1f2f5f6f7f8) and
the DCT is applied to the combined bands taken as a single band.
This produces C134, which represents the correlated cepstral fea-
ture vector for bands 1, 3 and 4. This vector not only features
the individual bands in the combination but also captures the cor-
relation between them. The identity of the corrupt band will not
normally be available a priori so we must apply this principle to all
possible combinations of three bands, assuming that there is one
combination that contains all clean sub-bands. The resulting fea-
ture set is denoted by {Cijk} for all combinations of i, j and k in
the range 1 ≤ i, j, k ≤ 4.

In a similar way, let us assume that there are two bands, Bands
1 and 3 say, corrupted by noise. Bands 2 and 4 will therefore
correspond to the clean bands that should be utilised for recog-
nition. These two bands are grouped together into a single band
(f3f4f7f8) and the DCT is applied. This creates C24, which rep-
resents the correlated cepstral feature vector for bands 2 and 4.
Again, since the identity of the two corrupt bands will not normally
be available a priori, we must apply this principle to all possible
combinations of two bands, assuming that there is one combina-
tion that contains the remaining two clean sub-bands. The result-
ing feature set is denoted by {Cij} for all combinations of i and j
in the range 1 ≤ i, j ≤ 4.

In general, to account for M band corruption with unknown
identities in a system with N sub-bands, we create all possible
combinations of N − M bands and treat each combination as a
single band by calculating a single vector for each combination.
The resulting feature set is denoted by {Cn1...nN−M }, for all com-
binations of ni in the range 1 ≤ ni ≤ N . When the number of
corrupted bands is unknown, this feature set is created for every
possible M from 0 to N−1, assuming zero or partial band corrup-
tion, and that there is thus one feature vector within these feature
sets that corresponds to all the remaining N−M clean bands. The
overall feature set containing all these sub-sets of feature vectors
can be denoted by C = { Cn1 , Cn1n2 , Cn1n2n3 ,. . . ,Cn1...nN } for
all combinations of ni in the range 1 ≤ ni ≤ N . This feature set
includes the feature vectors for each of the individual sub-bands
(as used in the independent sub-band system) and also a feature
vector for the complete band (as used in the full-band system), to
account for the situations in which there are N − 1 corrupt bands
and zero corrupt bands respectively. This correlated sub-band sys-
tem therefore includes both the independent sub-band system and
the full-band system as special cases.

3. ACOUSTIC MODELING

Given the feature set that contains feature vectors corresponding
to all possible combinations between the sub-bands, the task of the
recogniser is to select the feature vector corresponding to all clean
sub-bands to use for recognition. In the missing-feature methods,
sub-band feature streams usually need to be labeled as reliable or
corrupt for their recombination in the final classification decision.
A number of techniques have been studied for this purpose, for
example, the contribution of each sub-band feature stream to the

overall combination decision can be weighted by an estimation of
the local signal-to-noise ratio (SNR) in each band [1]. Recently,
several studies have attempted to release the need for identification
of the corrupted features. These include, for example, the full-
combination model [4], the acoustic backing-off model [6], and
the posterior union model (PUM) [7][8]. In this paper the PUM
is employed to select from the given feature set the feature vector
corresponding to the clean or less contaminated sub-bands.

Let C = {Cn1 , Cn1n2 , Cn1n2n3 ,. . . ,Cn1...nN } represent the
entire feature set for a given frame in a system consisting of N
sub-bands, where, as described earlier, each Cn1...nb corresponds
to a feature vector capturing correlation for a certain combination
of b sub-bands, i.e. bands n1, . . . , nb, in the range 1 ≤ ni ≤ N .
Assume that there are M bands being corrupted by noise (assum-
ing that 0 ≤ M ≤ N − 1 for partial frequency-band corruption),
and that Xn1...nN−M ∈ C is the feature vector modeling the re-
maining N − M clean sub-bands. The task is then to select from
C this clean vector for recognition, assuming no knowledge about
its identity. The PUM deals with the uncertainty of Xn1...nN−M

by assuming that it can be any of the feature vectors Cn1...nN−M

for N − M sub-bands, i.e., it can be expressed as a union of all
possible random vectors Cn1...nN−M . Based on the PUM, the
conditional probability of Xn1...nN−M given a speech state s can
be written as

P (Xn1...nN−M |s) = P (
∨

n1...nN−M

Cn1...nN−M |s)

≈
∑

n1...nN−M

P (Cn1...nN−M |s) (1)

where ∨ denotes the union (i.e. “or”) operator, which is applied
over all possible feature vectors of (N − M) distinct sub-bands.
A posterior union probability of state s given Xn1...nN−M can be
defined as

P (s|Xn1...nN−M ) =
P (Xn1...nN−M |s)P (s)∑
s P (Xn1...nN−M |s)P (s)

(2)

where P (Xn1...nN−M |s) is the conditional union probability de-
fined in (1) and P (s) is the prior probability for state s.

An optimal estimation of M , i.e. the number of noisy sub-
bands, can be obtained based on (2), using the following maximum
a posteriori (MAP) rule:

M̂ = arg max
M

P (s|Xn1...nN−M ) (3)

The optimized posterior union probability, maxM P (s|Xn1...nN−M ),
is used to replace the state-based emission probability in an HMM
for frame vector Xn1...nN−M associated with state s. This model
requires neither the identity not the number of corrupted sub-bands.

4. EXPERIMENTAL RESULTS

4.1. Conditions

The TIDigits database was used for the experiments. This database
contains 6196 test utterances for connected-digit recognition. The
speech was sampled at 8 kHz and segmented into frames of 200
samples. Each frame was divided into five sub-bands, and each
sub-band was modeled by an equal number of static MFCCs and
delta MFCCs. For independent sub-bands 4 MFCCs (i.e. two
static and two delta) were used. For combinations of 2, 3, 4 &
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Table 1. String accuracy rates and error reduction rate (ERR)
for correlated sub-band (CSB) features and independent sub-band
(ISB) features in clean conditions

Type Performance
CSB 98.13
ISB 96.51
ERR 46.42

5 sub-bands, 10, 14, 18 & 22 MFCCs were used respectively. For
each combination, the static and delta MFCCs were merged into
a single feature vector for a frame. Each digit was modeled by a
left-to-right HMM with sixteen states, and each state consisted of
three Gaussian mixtures with diagonal covariance matrices. A 3-
state HMM was used to account for the silences surrounding each
utterance, the middle state of which was used to account for short
inter-digit pauses within the connected digit utterances.

Experiments were conducted using the clean test utterances
from the TIDigits database and using the same utterances cor-
rupted by various stationary and non-stationary noises. To gen-
erate stationary noise, Gaussian white noise was passed through a
band-pass filter with a bandwidth of 100Hz at various central fre-
quencies to create the effect of 1, 2 or 3-band corruption within
the five sub-bands. The noise was added to the clean test utter-
ances at signal-to-noise ratios of 0, 5 and 10dB, respectively. For
non-stationary noise, five different mobile phone ringtones were
sampled at 8kHz and added to the clean test utterances at signal-
to-noise ratios of 0, 5 and 10dB, respectively.

To study the effect of modeling sub-band correlation on recog-
nition performance, experiments were conducted using indepen-
dent sub-band (ISB) features and correlated sub-band (CSB) fea-
tures in ideal conditions, i.e. where the number of corrupted bands
is known. This knowledge is used to define the value M for each
frame in the PUM. To investigate the potential for modeling corre-
lation in practical conditions, i.e. where the number of corrupted
bands is not known, the same experiments were conducted using
the PUM where the number of noisy bands, M , was automatically
estimated frame-by-frame based on the joint MAP algorithm de-
scribed in (3).

4.2. The effect of modeling sub-band correlation

Experiments on CSB features and ISB features were conducted
in clean conditions and in various simulated and real-world noise
environments. The number of noisy bands was assumed known
in the PUM such that any observed improvement in performance
would be mainly attributable to modeling sub-band correlation. In
these conditions, the number of noisy bands is either known a pri-
ori (for stationary noise) or selected based on best performance
(for non-stationary noise).

Table 1 shows a 46.42% reduction in errors is achieved by
modeling sub-band correlation for clean speech. Table 2 shows
the average string accuracy rates and error reduction rates (ERR)
for experiments conducted in various stationary narrow-band noise
conditions. Improvements in performance by modeling correlation
are observed in all noise conditions, particularly in the presence
of 2-band noise corruption. Greater ERRs are achieved at higher
signal-to-noise ratios. Figure 2 shows the spectra of the mobile
phone ringtones used as real-world noise. It demonstrates that the

Table 2. Average string accuracy and ERR for CSB features and
ISB features in various band-selective stationary noise conditions

Number of corrupt bands
SNR (dB) Type 1 band 2 band 3 band

CSB 94.90 93.87 81.77
10 ISB 90.47 85.54 73.35

ERR 46.54 57.60 31.58
CSB 92.88 92.67 76.87

5 ISB 87.73 83.62 70.21
ERR 41.98 55.22 22.34
CSB 87.84 90.19 70.68

0 ISB 82.69 80.54 65.25
ERR 29.77 49.57 15.64

Table 3. String accuracy and ERR for CSB features and ISB fea-
tures in real world non-stationary noise conditions

Mobile Phone Ringtone Type
SNR (dB) Type 1 2 3 4 5

CSB 95.24 89.74 90.45 92.21 93.02
10 ISB 93.21 81.15 80.62 89.69 86.23

ERR 29.90 45.57 50.72 24.44 49.31
CSB 94.68 87.07 87.79 91.58 90.99

5 ISB 93.11 77.39 75.76 88.15 83.93
ERR 22.79 42.81 49.63 28.95 43.93
CSB 93.48 84.44 83.43 90.03 88.42

0 ISB 84.25 64.79 62.82 79.11 70.06
ERR 58.60 55.81 55.43 52.27 61.32

noises are non-stationary and have a dominant band-selective na-
ture. The results in Table 3 show that modeling correlation reduces
recognition errors for all types of noise.

Modeling sub-band correlation therefore improves recognition
performance in clean conditions and in all tested stationary and
non-stationary noise conditions.

4.3. Modeling sub-band correlation based on PUM

Tables 1–3 in the previous section indicate that capturing sub-band
correlation improves the performance, assuming that the number
of noisy sub-bands is known. Tables 4–6 in this section show the
results obtained by the PUM assuming no knowledge (i.e. identity
and number) of the noisy sub-bands. The number of noisy sub-
bands is estimated for each frame based on the MAP decision in
(3), for both CSB and ISB features.

Table 4 shows a 31.35% reduction in errors is achieved for
clean speech by modeling correlation between sub-bands. The

Table 4. String accuracy rates and ERR for CSB and ISB features
in clean conditions using the PUM based on MAP optimization

Type Performance
CSB 95.38
ISB 93.27
ERR 31.35
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PUM therefore achieves a comparable ERR by modeling correla-
tion for clean speech to that obtained in ideal conditions (46.42%),
as shown in Table 1. Table 5 shows reductions in recognition errors
are observed in all tested narrow-band stationary noise conditions
using correlated features, particularly in 2-band noise corruption.
In 3-band noise corruption, the PUM achieves a very similar per-
formance to that obtained in ideal conditions, as shown in Table 2.
Table 6 shows modeling correlation also reduces recognition er-
rors in all tested real-world non-stationary noise conditions using
the PUM. For non-stationary noise, the PUM based on MAP opti-
mization performs almost as well as in ideal conditions (as shown
in Table 3) because it estimates the number of noisy sub-bands on
a frame-by-frame basis.

The results in Tables 4–6 show that the PUM based on MAP
estimation of the number of noisy bands is able to perform almost
as well as, and sometimes better than, the PUM assuming that the
number of noisy bands is known, i.e. it is able to capture most of
the benefits of modeling correlation without requiring knowledge
of the noisy bands.

Table 5. Average string accuracy rates and ERRs for CSB fea-
tures and ISB features in various band-selective stationary noise
conditions using the PUM based on MAP optimization

Number of corrupt bands
SNR (dB) Type 1 band 2 band 3 band

CSB 91.15 89.01 81.02
10 ISB 87.41 82.37 73.16

ERR 29.72 37.67 29.27
CSB 87.92 86.41 74.88

5 ISB 83.87 79.37 68.08
ERR 25.07 34.14 21.30
CSB 81.23 82.45 67.78

0 ISB 78.14 75.78 62.28
ERR 14.11 27.54 14.57

Table 6. String accuracy and ERR for CSB features and ISB fea-
tures in real world non-stationary noise conditions using the PUM
based on MAP optimization

Mobile Phone Ringtone Type
SNR (dB) Type 1 2 3 4 5

CSB 94.85 89.29 87.84 93.27 91.93
10 ISB 92.23 82.77 76.53 89.79 86.96

ERR 33.72 37.84 48.19 34.08 38.11
CSB 94.06 86.98 84.88 92.62 90.22

5 ISB 91.85 78.39 70.93 88.40 83.94
ERR 27.12 39.75 47.99 36.38 39.10
CSB 91.80 83.78 81.25 91.17 87.12

0 ISB 90.56 71.65 63.10 86.02 80.12
ERR 13.14 42.79 49.19 36.84 35.21

5. CONCLUSIONS

This paper proposed a new feature format for sub-band speech
recognition. The new feature format captures correlation between

(a) Ringtone 1 (b) Ringtone 2

(c) Ringtone 3 (d) Ringtone 4

(e) Ringtone 5

Fig. 2. Frequency spectra of the real-world noises used in tests

sub-bands and improves robustness in the presence of both sta-
tionary and non-stationary band-selective noises and in noise-free
conditions. Correlated sub-band features incorporate useful infor-
mation that independently extracted sub-band features disregard.
Furthermore it is shown that the posterior union model based on
MAP estimation for the number of noisy bands is able to cap-
ture most of the benefits of modeling correlation without requiring
knowledge about the noisy bands.
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