
ASYNCHRONOUS HMM WITH APPLICATIONS TO SPEECH RECOGNITION

Ashutosh Garg, Sreeram Balakrishnan, Shivakumar Vaithyanathan

IBM Almaden Research Center, San Jose, CA 95120

ABSTRACT

We develop a novel formalism for modeling speech signals
which are irregularly or incompletely sampled. This situ-
ation can arise in real world applications where the speech
signal is being transmitted over an error prone channel where
parts of the signal can be dropped. Typical speech systems
based on Hidden Markov Models, cannot handle such data
since HMMs rely on the assumption that observations are
complete and made at regular intervals. In this paper we
introduce the asynchronous HMM, a variant of the inho-
mogenous HMM commonly used in Bioinformatics, and
show how it can be used to model irregularly or incom-
pletely sampled data. A nested EM algorithm is presented
in brief which can be used to learn the parameters of this
asynchronous HMM. Evaluation on real world speech data
that has been modified to simulate channel errors, shows
that this model and its variants significantly outperforms the
standard HMM and methods based on data interpolation.

1. INTRODUCTION

Hidden Markov Models (HMMs) [1] are a popular tool to
model time series data and are widely used in fields such
as Speech Recognition, computer vision, text analysis, and
BioInformatics. While modeling the data using HMMs, it
is assumed that there is an underlying Markov process that
generates the hidden state sequence and observations are
made at regular intervals conditioned on these states. As
we argue in this paper, for a number of reasons the latter as-
sumption may not always hold. For example, when speech
data is transmitted over a noisy channel before recognition
then some of the frames might be lost. The approaches men-
tioned in literature to tackle these problems can be broadly
divided into two categories -

1 If the actual time-stamps of the missing frames are
available, then interpolated values can be used to fill
the missing observations. Once predicted, data is de-
coded using standard HMM.

2 Modify the structure of the underlying HMM by adding
skip-arcs (allow certain states to be skipped). The
weights of the skip-arcs are either learnt [2] or cho-
sen in some ad-hoc way.

In this paper we introduce the asynchronous HMM that
directly models the uncertainty associated with missing ob-
servations without assuming the availability of time-stamps
(required for interpolation). This is achieved by actually
modeling the time stamps associated with each observation
as a hidden variable. As a consequence of this the time inter-
val between each pair of observations may not be the same,
which results in the transition matrix becoming time depen-
dent. We show that if the time gap is k, then the effective
transition matrix is Ak. This makes the asynchronous HMM
a special case of inhomogeneous HMM. However, unlike
the more general case of inhomogeneous HMM where the
transition matrix varies with time, here the underlying tran-
sition matrix is fixed and the variability arises only due to
the irregularity in the sampling process (leading to miss-
ing observations). Our results on real speech data demon-
strate that the asynchronous HMM is an effective method
for handling data that has been irregularly or incompletely
sampled, and even outperforms alternatives based on inter-
polation of the missing data.

The remainder of the paper is structured as follows. In
Section 2 we introduce the notation and give a brief de-
scription of the standard HMM formulation. Section 3 in-
troduces asynchronous HMM and discusses various special
cases. In Section 4 we give a brief description of a novel,
nested EM algorithm for Maximum Likelihood training of
the new model. Section 5 is concerned with how the Asyn-
chronous HMM can be implemented efficiently using some
alternative formulations. Finally in Section 6 we present
results on a speech recognition task.

2. NOTATIONS AND PRELIMINARIES

Fig. 1 gives the standard HMM rolled out in time. Here
Si ∈ {1, ..., N} and Oi ∈ {1, ...,M} are random vari-
ables referred to as hidden states and observations. The cor-
responding sequences of random variables are denoted as
S = {S1, ..., ST },O = {O1, ..., OT }. The standard HMM
is characterized by parameter vector λ = (A,B, π), where

• A - Transition probability matrix. It is a N×N matrix
where aij = A(i, j) = P (St = i|St−1 = j).

• B - Observation probability matrix. It is a M × N
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Fig. 1. Standard Hidden Markov Model

matrix where bij = B(i, j) = P (Ot = i|St = j).

• π - Initial state probability matrix. π(i) = P (S1 =
i). It is a N × 1 matrix.

3. ASYNCHRONOUS HMM

Consider an observation sequence Õ = {Õ1, Õ2, ..., ÕK}.
Let Õk was observed at time Ck where CK ≤ T but the
actual value of Ck’s are unknown. There are Choose(T, K)
possible ways in which the time index can be assigned to
the observation sequence. However, many of these choices
may not be feasible due to the constraints imposed by the
observation and transition probability matrices. Moreover,
we might want to incorporate prior information in the form
of a distribution over the length of the sequence or over the
time gaps between individual observations. It is precisely
this problem with missing observations that asynchronous
HMMs are designed to tackle.

For the observation sequence Õ, if ∀k : Ck+1 = Ck+1
(i.e., there are no missing observations) then the problem
reduces to that of the standard model. In our model, we
allow Ck to take on any values under the constraint C1 <
C2, . . . , CK ≤ T . It is therefore conceivable that for some
values of k, the difference between successive Ck’s can be
greater than one. This model is further generalized if instead
of the actual values of Ck, only a prior distribution over the
values that Ck can take is assumed to be known. Note that
Ck+1 is not independent of Ck since due to the temporal
constraint Ck+1 > Ck.

Fig. 2 represents an asynchronous HMM. Given that
S̃k, Õk are observed at time Ck, we will use SCk

and OCk

interchangeably with S̃k and Õk. The additional parameters
needed to characterize asynchronous HMM are:

• P (Ck+1|Ck) - the probability distribution over the
values taken by Ck+1 conditioned on the values of
Ck. This is our prior model for the sequence C1 · · ·CK .
For simplicity we make a first order Markov assump-
tion about Ck+1. In addition P (Ck+1|Ck) can also be
used to impose the constraint that Ck+1 > Ck while
at the same time CK ≤ Tmax (the maximum length
of the ground truth observation sequence.) W.l.o.g we
assume P (C1 = 1) = 1.

C  2 C  3 C  T

S  1 S  2 S  3 S  T

O  TO  3

C  1

O  1 O  2
~ ~ ~ ~

~ ~ ~ ~

Fig. 2. Asynchronous HMM.

• P (S̃k+1 = j|S̃k = i, Ck+1, Ck) - Since, Ck is the
time-stamp associated with S̃k, we have

P (S̃k+1 = j|S̃k = i, Ck+1, Ck) = [A(Ck+1−Ck)]ij (1)

A is the transition probability matrix of the asynchronous
HMM. The ijth element of ACk+1−Ck is obtained by
summing the probabilities of all state sequences of
length Ck+1 − Ck that start at state i and end at state
j. It is this particular choice of parameter that distin-
guishes asynchronous HMM from other extensions of
HMM such as factorial [3] or coupled HMM [4].

Let λ̃ denote the parameters of this model. The joint
probability of the observation sequence, state sequence and
time index sequence of length K, can be written as

P (�O, �S, C|�λ) = P ( �O1, �S1)
K�

k=2

P ( �Ok|�Sk, Ck)P (�Sk, Ck|�Sk−1, Ck−1)

= P ( �O1, �S1)
T�

k=2

P (OCk
|SCk

)P (Ck|Ck−1)[A
(Ck−Ck−1)

]SCk−1
SCk

Once the parameters of the asynchronous model are es-
timated, decoding can be accomplished using a two step
process - Obtain the most likely time index sequence (Ck)
followed by obtaining the hidden state sequence Sk. Esti-
mating the parameters of this model is non-trivial and in the
next section we discuss the challenges involved and present
a nested EM algorithm as a possible solution.

3.1. Special Case - Skip Arc Model

There are a number of cases (arising either due to the data
generation process itself or as a result of various simplifying
assumptions made) which allows one to simplify the com-
putational effort associated with the asynchronous HMM. In
particular the most interesting case is of skip arc model. In
this model, it is assumed that the P (Ck+1|Ck) is indepen-
dent of k. That is the probability of missing an observation
at any given time is independent of the actual time at which
the observation is made. It can be shown that this scenario
can be modeled by the standard HMM by choosing the tran-
sition matrix as Â =

∑∞
n=1 P (n)An. Note that in this case

one doesn’t have control over the actual number of miss-
ing frames which is important as evident from the results
obtained on the speech data.
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4. NESTED EM ALGORITHM FOR TRAINING

The asynchronous HMM is a model proposed primarily to
tackle missing observations. If there are no missing obser-
vations in the training data then data can be modeled using
a standard HMM. However, if we then encounter missing
observations during decoding the standard HMM has to be
enhanced by additional parameters (P (Ck|Ck−1)) to form
an asynchronous HMM. Since these were not present during
training they have to specified by some prior knowledge. If,
on the other hand, the training data does contain missing ob-
servations then these extra parameters, of the asynchronous
HMM, can be learned. The EM learning algorithm used
for standard HMM, unfortunately, cannot be directly used
to learn an asynchronous HMM. At a high level, the nested
EM algorithm adopted for this purpose is an iterative algo-
rithm that iterates over these three steps -

• E-Step 1 - Estimate the hidden state time index se-
quence C1, . . . , Ck.

• E-Step 2 - Based on estimated time indexes, obtain
the hidden state sequence S̃1, . . . , S̃K .

• M-Step - Estimate the parameters that maximize the
probability.

It can be easily shown that the algorithm is guaranteed to
converge and can be seen as a special case of generalized
EM algorithms. In the interest of the space, the details and
actual update equations are ignored.

5. IMPLEMENTATION ISSUES

The simplest way to implement an asynchronous HMM is
to define a new state variable Q that is the product of the
state spaces of S̃ and C. If S̃ ∈ 1, . . . , N and C ∈ 1, . . . , T
then we can define

Q ∈ 1, . . . , NT where Qk = N(Ck − 1) + S̃k

We can then obtain a new transition matrix for Q from

P (Qk|Qk−1) = P (S̃k = j, Ck|S̃k−1 = j, Ck−1)

= P (S̃k = j|S̃k−1 = i, Ck, Ck−1)P (Ck|Ck−1)

= [ACk−Ck−1 ]ijP (Ck|Ck−1) (2)

Hence using equation (2) the asynchronous HMM can be
implemented as normal HMM with an extended state space
and a transition matrix computed from (2). Unfortunately
it is easy to see that even for small T this leads to a huge
increase in the number of states. We propose two ways of
handling this issue: (1) dynamically expand the state space
and (2) simplify the asycnhronous HMM, by redefining C
to reduce its range.

5.1. Dynamic state space expansion

Instead of statically expanding the product of the state spaces
of S and C to Q, we can use a dynamic expansion that only
creates the states that are going to have high probability.
Dynamic HMM implementations are common in Large Vo-
cabulary Speech Recognition systems [5]. For the particular
case of the asynchronous HMM we can use beam pruning
in the search to limit the underlying set of values for Ck that
are kept alive for each state Sk.

5.2. Redefining C to reduce its range

Another way of reducing the amount of computation re-
quired is to change the definition of C so that it has a smaller
range, but in a way that preserves the underlying ability to
model irregularly sampled and incomplete data. One way
of doing this is to define Ck − 1 to be the difference be-
tween the time k the observation is made and the real time t
the observation was generated. Hence Ck − 1 = t − k and
Õk = Ot where t = k + Ck − 1. Also

P (Sk = j|Sk−1 = i, Ck, Ck−1) = [ACk−Ck−1+1]ij

We can now impose a restriction that the maximum delay
should be less than D, i.e. that C ∈ 1, . . . , D. Since D can
be much smaller that maximum value of t the total number
Q space states becomes much more manageable.

As a concrete example, if we set D = 2 and define Q as
in (2) then it can be seen that the effective transition matrix
in Q space, AQ is given by:

AQ =

�
� AS [AC ]11 A2

S [AC ]12 A3
S [AC ]13

Z AS [AC ]22 A2
S [AC ]23

Z Z AS [AC ]33

�
� (3)

where AS is the transition matrix in S space, Z is a matrix
of zeros and [AC ]ij = P (Ck = j|Ck−1 = i).

A further simplification can be made if we assume that
there is only a single contiguous block of missing observa-
tions. In this case

AC =

�
� a0 a1 a2

0 1 0
0 0 1

�
�

This transition matrix for C ensures that once a transition
from C = 1 has been made, then no further transitions in
the value of C are possible except self transitions. i.e. it can
model a single block of 1 . . . D missing frames. For this
particular case C can be further redefined as follows:

C =

�
1 if there are no missing frames
2 if a block of ≤ D frames is missing

The effective matrix in Q space assuming now becomes

AQ =

�
ASa1

�D
d=2 Ad

Sad

Z AS

�
(4)
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6. RESULTS

We tested the asynchronous HMM on a speech recognition
task from our test database collected in a car [6]. We report
word error rates on a test set comprised of small vocabulary
grammar based tasks (addresses, digits, command and con-
trol). Data for each task was collected at 3 speeds: idling,
30mph and 60mph. There are 147 combinations of speaker,
task and environment in the test set, and for each combi-
nation there are 100 test utterances, giving a total of 73743
test words. The observations consisted of 39 dimensional
cepstra+delta+accelation at 67 frames per second, and the
recognition system had 10K Gaussians. The baseline WER
for this system was 2.36%.

To simulate conditions for which the data is irregularly
or incompletely sampled, we randomly removed a single
block of frames of random length from each utterance. The
maximum length of the block was varied between 20 and 40
frames. We computed results for two scenarios
Location of missing block unknown - in this scenario the
following systems were compared

(a) A standard HMM

(b) A Full Asynchronous HMM with no prior knowledge
of the location or size of the missing block - the tran-
sition matrix defined by (4) was used for all frames
(with D = 15 and ad = 0.8d)

Location of missing block known - here we compared the
following techniques that require knowledge of the location
of the missing block

(a) An Interpolation of the data followed by a standard
HMM - The interpolation was performed by linearly
interpolating the state observation probabilites of the
first frame before and after the deleted block

(b) A Restricted Asynchronous HMM used only for frames
straddling the missing block of data - The transition
matrix and definition of C from equation (4) was used
for the transition between the frames staddling deleted
block. For all other frames the

∑D
d=2 Ad

Sad part of (4)
was replaced by a matrix of zeros

It can be seen from the results in Table 1 that with no
knowledge of the location of the deleted block, the Asyn-
chronous HMM achieves significant reduction in error rate
versus the standard HMM, especially as the size of the block
increases. The only drawback is that for no deletions it
has a worse performance. When the location of the miss-
ing block is known, techniques such as interpolation can
be used. However if the Asynchronous HMM is restricted
to the transition between the frames straddling the missing
block and a standard HMM transition used elsewhere, then
this system either matches or significantly outperforms in-
terpolation.

Location Max Size of
of Block Deleted Block 0 20 30 40
Unknown Standard HMM 2.36 6.15 9.41 12.47
Unknown Full Async 4.64 5.80 7.21 9.23

Known Interpolate Data 2.36 4.06 6.35 8.92
Known Restricted Async 2.36 4.14 5.56 7.44

Table 1. Comparison of Word Error Rates (%) For stan-
dard HMM versus full asynchronous HMM with no knowl-
edge of missing block and for Interpolation of Data fol-
lowed by Standard HMM versus Restricted Asynchronous
HMM (used only where data is missing)

6.1. Conclusion

In this paper we presented a new model, the Asynchronous
HMM, that extends HMMs to model irregularly sampled
data, and we provided a novel nested EM training algorithm.
We showed with experiments on speech data with randomly
deleted blocks of data, that the asynchronous HMM out-
performs the both standard HMM and techniques such as
interpolation. In future we plan to explore the potential
gains that may arise from retraining asynchronous model
on the speech data. Additionally, the flexibility of the asyn-
chronous HMM may prove useful in other applications.
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