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Abstract 
We present the Bayesian duration modeling and learning for 
speech recognition under nonstationary speaking rates and noise 
conditions. In this study, the Gaussian, Poisson and gamma 
distributions are investigated to characterize duration models. 
The maximum a posteriori (MAP) estimate of gamma duration 
model is developed. To exploit the sequential learning, we adopt 
the Poisson duration model incorporated with gamma prior 
density, which belongs to the conjugate prior family. When the 
adaptation data are sequentially observed, the gamma posterior 
density is produced for twofold advantages. One is to determine 
the optimal quasi-Bayes (QB) duration parameter, which can be 
merged in HMM’s for speech recognition. The other one is to 
build the updating mechanism of gamma prior statistics for 
sequential learning. EM algorithm is applied to fulfill parameter 
estimation. In the experiments, the proposed Bayesian 
approaches significantly improve the speech recognition 
performance of Mandarin broadcast news. The batch and 
sequential learning are investigated for MAP and QB duration 
models, respectively. 

1. Introduction 
There is no doubt that the performance of automatic speech 
recognition is significantly degraded in adverse conditions. 
Speaking rate is one of the mismatch sources between training 
and recognition data. One successful approach to recognize fast 
speech aims to estimate the adaptive state duration parameters in 
hidden Markov models (HMM’s). In [8], the temporal 
constraints of state duration were imposed in Viterbi decoding. 
Considerable improvement was attained for noisy speech 
recognition. Except recognizing fast and noisy speech, the 
duration parameters are essential for HMM modeling of normal 
speech. In standard HMM, the state duration probability 
decreases exponentially with time. When the speech signal stays 
in state i  with self-transition probability iia  for τ  frames, 

the implicit duration probability density is formed by a 

geometric distribution )1()( 1
iiiii aad −= −ττ . However, this 

exponential state duration density is inappropriate for most 
signals. The pioneer work of Ferguson [4] discovered the 
explicit duration modeling for HMM’s through calculating the 
nonparametric )(τid  for all states i  and duration lengths τ .

The physical speech duration was characterized without state 
self-transition. Because of inducing too many parameters, this 
method suffered from insufficient training data and increased 
computational load. Also, the alternative of using parametric 
density function was widely discussed. This approach had the 
significant advantage for reliable parameter estimation. In 
addition to Gaussian density, Russell and Moore [7] applied 
Poisson distribution while Levinson [6] applied gamma 
distribution for parametric duration modeling. In [1], the state as 
well as the word parametric duration models was merged in a 
modified Viterbi algorithm. In general, the parametric duration 
models using different distribution functions have been 

demonstrated effective for speech recognition. In this paper, we 
present the Bayesian duration learning framework for robust 
speech recognition. The MAP and QB estimates are developed 
and realized via the expectation-maximization (EM) algorithm.

2. Parametric Duration Modeling 
In this study, we externally append the state duration densities 

)}({ ⋅= idD  to standard HMM parameters consisted of initial 

state probabilities }{ iππ = , transition probabilities 

},{ jiaA ij ≠=  and observation densities )}({ ⋅= ibB . Given a 

set of training data ),,,( 21 TX xxx L= , we are estimating the 

joint HMM parameters ),,,( DBAπλ =  based on the 
maximum likelihood (ML) criterion. With the parametric models, 
we are able to perform Bayesian duration model learning. 

2.1. ML Parameter Estimation 
ML estimation aims to find the optimal parameters MLλ  via 

maximizing the observation likelihood function 
)(maxarg λλ

λ
XpML = .             (1) 

Because HMM is inherent with incomplete data problem, it is 
necessary to apply EM algorithm [2] to realize ML parameter 
estimation. Accordingly, we introduce the HMM state sequence 

),,,( 21 Tqqq K=q , Nqt ≤≤1 , to generate the complete data 

),( qX . The E-step is to calculate the expectation of complete 

data given new estimate λ̂  after having current estimate λ

i

N

i

XiqPXXpEQ πλλλλλ ˆlog),(],)ˆ,([log)ˆ(
1

1∑
=

=== q

).(ˆlog),(

ˆlog),,(

)(ˆlog),(

1 1

1 ,1 2
1

1 1

tq

N

i

T

t
t

ij

N

i

N

ijj

T

t
tt

N

i

T

t
titt

t

s

bXiqP

aXjqiqP

dXiqP

x∑∑

∑ ∑ ∑

∑∑

= =

= ≠= =
−

= =
∈

=+

==+

=+

λ

λ

τλ

     (2) 

The duration density )(⋅id  is incorporated instead of using 

self-transition probability iia . Transition probability parameters 

contain },{ jiaA ij ≠= . In case of left-to-right HMM without 

state skipping, this duration penalty is activated when tx  stays 

at the starting frame st  of a state. Let the state at moment st

last for 
stτ  frames. Generally, the starting frame labels st  of 

observations X  can be found via Viterbi segmentation. Using 
the segmental ML method, we may determine the optimal state 
sequence with respect to the observation sequence X . The 
posterior probabilities are )(),( 11 iqXiqP −== δλ ,

)()(),,( 11 jqiqXjqiqP tttt −−=== −− δδλ and
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)(),( iqXiqP tt −== δλ  where )(⋅δ  is Kronecker delta 

function. Specially, the posterior probability ),( λXiqP
stt =∈

of time t  staying at frame st  of state i  is expressed by

)()()(),( ittiqXiqP
ss ttsttt ∈∈ ≡−−== ξδδλ .     (3) 

ML estimates of }ˆ{ iπ , }ˆ{ ija  and )}(ˆ{ ⋅ib  have been 

well-known. This paper is focused on ML estimation of )}(ˆ{ ⋅id .

2.2. ML Estimation for Different Duration Parameters 

1) Gaussian Duration Parameters αD . Discrete duration 

length τ  of state i  can be simply represented by a continuous 

Gaussian density, ),(~ 2
iiN σµτ ,
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where iµ  and 2
iσ  are mean and variance, respectively. Only 

positive value 0≥τ  is allowed in (4). In this case, duration 

parameters are formed by },{ 2
iiD σµα = . The expectation 

function for state i  yields 
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When performing maximization step, the new ML estimates of 
duration mean and variance are respectively produced by 

τξτξµ =⋅= ∑∑ = ∈= ∈
T
t tt

T
t ttti ii

ss 11 )()(ˆ            (6) 

∑∑ = ∈= ∈ −⋅= T
t tt

T
t ittti ii

ss 11
22 )()ˆ()(ˆ ξµτξσ .       (7) 

These results are sample mean τ  and sample variance of 
duration lengths }{

st
τ  of a state. 

2) Poisson Duration Parameters βD . More precisely, the 

state duration variable τ  can be represented using discrete 
Poisson distribution 

[ ]i
i

iid µ
τ
µµτ

τ
−= exp

!
)( ,             (8) 

as suggested by Russell and Moore [7]. Only parameter 
iµ

exists in a Poisson distribution. Poisson duration parameters are 
constructed by }{ iD µβ = . The expectation function becomes 

[ ]iit

T

t
ttii iQ
s

µµτξµµβ ˆˆlog)()ˆ(
1

−⋅∝∑
=

∈ .       (9) 

Taking differentiation with respect to iµ̂ , we can derive the 

new parameter estimate, which has the same formula as (6). 
3) Gamma Duration Parameters γD . Furthermore, it is 

popular to apply gamma distribution 
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to fit the statistics of state duration. In (10), )(⋅Γ  is gamma 

function, iη  and iν  are parameters and 0>iη , 0>iν .

Gamma duration parameters contain },{ iiD νηγ = . We have  
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In [1][8], ML estimates of gamma parameters )ˆ,ˆ( ii νη

were calculated using the empirical method. Because gamma 
distribution ),( iiid νητ  has mean ii ην  and variance 

2
ii ην , we may empirically compute the sample mean iµ̂  of 

(6) and sample variance 2ˆ iσ  of (7) using training samples 

}{
st

τ  of state i . The new gamma parameter estimates can be 

determined by 2ˆˆˆ iii σµη =  and 22 ˆˆˆ iii σµν = .

3. Bayesian Learning of Duration Models 

In real world, speech durations are varied for different speakers, 
speaking rates, environments, etc. A practical way is to adapt the 
state duration models to test conditions. Bayesian learning 
provides the fundamental theory. The maximum a posteriori
(MAP) and quasi-Bayes (QB) estimates are respectively derived 
for batch and sequential learning of state duration parameters 
D .

3.1. MAP and QB Parameter Estimates 
1) MAP Batch Learning. Namely, the model learning is 

performed when all adaptation data X  are presented. MAP 
duration parameters MAPD  are obtained by maximizing the 

posterior density )( XDp , or equivalently, the product of 

likelihood )( DXp  and prior density )(Dg ,

)()(maxarg)(maxarg DgDXpXDpD
DD

MAP == .   (12) 

When applying EM algorithm, we should determine the 
expectation function 

).ˆ(log)ˆ(],),ˆ([log)ˆ( DgDDQDXXDpEDDR +== q  (13) 

MAP estimates are obtained by maximizing )ˆ( DDR . This 

paper presents the MAP estimate for gamma duration 
parameters. 

2) QB Sequential Learning. However, it is difficult to trace 
the newest model statistics from batch learning data under the 
changing environments. It should be preferable to conduct 
sequential learning using online collected data. QB sequential 
learning is developed. Consider a sequence of adaptation data, 

),(),,,( )1(
11

)(
n

n
nn

n XXXX −
− == χχ L . Using QB theory [5], 

the posterior density of )(nχ  is approximated by the product of 

current data likelihood )( DXp n  and the prior density with 

hyperparameters )1( −nϕ  estimated from historical data )1( −nχ ,
i.e. 

).()(maxarg

)()(maxarg)(maxarg

)1(

)1()(

−

−

≅

==

n
n

D

n
n

D

n

D
QB

DgDXp

DgDXpDpD

ϕ

χχ
 (14) 

The resulting expectation function is given by 

)|ˆ(log)ˆ()ˆ( )1()()( −+= nnn DgDDQDDR ϕ .     (15) 

Herein, only Gaussian and Poisson duration models are 
considered for QB estimation because they are associated with 

conjugate priors )( )1( −nDg ϕ . Sequential updating of 

hyperparameters from )1( −nϕ  to )(nϕ  is achievable [5]. 

3.2. MAP Estimation for Gamma Duration Parameters 
To derive MAP estimates of gamma parameters },{ iiD νηγ = ,

we assume that parameters iη  and iν  are independent with 
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Gaussian priors, ),(~ 2
iiii N ηη σµηη  and ),(~ 2

iiii N νν σµνν .

The expectation function ),ˆ,ˆ( iiiiR νηνηγ  is accordingly 

defined. When performing M-step, the new estimate iη̂  is 

obtained via 
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However, we could not derive the closed form solution of iν̂ .

The Newton's algorithm is applied to iteratively reach the 
optimal solution 
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3.3. QB Estimation for Gaussian Duration Parameters 
When using Gaussian duration model in (4) with parameters 

},{
2)()()( n

i
n

i
nD σµα = , we assume that the parameter )(n

iµ  is 

random with Gaussian prior ),(~
2)1()1()( −− nnn

i mN µµ ρµ  and 2)(n
iσ

is fixed but unknown. After EM implementation for )(nχ , the 
new QB estimate )(ˆ n

iµ  is formulated by 
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3.4. QB Estimation for Poisson Duration Parameters 
In [7], the Poisson distribution was studied for duration model 
estimation. The QB sequential learning mechanism was 
exploited. Here, the prior density of the parameter }{ )()( n

i
nD υβ =

of Poisson distribution is assumed to be gamma distribution 

],exp[)|( )()1()()1()( 1)1(
n

i
nn

i
nn

n

Dg υηυϕ υββ
υν −− −∝

−−

       (20) 

where hyperparameters are� ),( )1()1()1( −−− = nnn
υυβ νηϕ . Notably, the 

prior density using gamma distribution belongs to conjugate 
prior family. This attractive property is useful to derive 
sequential learning mechanism of hyperparameters. 

Given Poisson duration models and the gamma prior pdf, 
the expectation function becomes 

[ ]

)()()()(

)()1(

1

)()1(

1

)(

)()1()()1(

1

)()()()()(

ˆˆlog)1(

ˆ)(ˆlog1)(

ˆˆlog)1(ˆˆlog)()ˆ(

n
i

nn
i

n

n
i

n
T

t
tt

n
i

n
T

t

n
ttt

n
i

nn
i

n
T

t

n
i

n
i

n
ttt

n
i

n
i

ii

iR

ss

s

υηυν

υηξυντξ

υηυνυυτξυυ

υυ

υυ

υυβ

−−=

⎥
⎦

⎤
⎢
⎣

⎡ +−⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠

⎞
⎜
⎝

⎛ +=

−−+−∝

−

=
∈

−

=
∈

−−

=
∈

∑∑

∑

(21) 

The posterior and the prior densities of Poisson distribution are 
belonging to gamma distribution [2], then the updated 
hyperparameters ),( )()()( nnn

υυβ νηϕ =  are represented 
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The updated )(ˆ n
iυ  is calculated by 
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4. Experiments 
4.1. Speech Databases and Experimental Setup 
The speaker adaptation task is conducted to examine the 
performance of the proposed sequential learning methods of 
duration model. It is performed on a continuous Mandarin 
speech recognition task. We adopted the microphone-based 
TCC300 speech database to estimate the SI HMM’s and the 
associating duration parameters of different parametric 
distributions and to obtain the baseline recognition rate. There 
were totally 15851 utterances (about 16 hours) covering short 
and long sentences. We randomly selected 1500 utterances for 
recognition and the other 14266 for training. In order to reveal 
the improvement of the recognition performance using MAP and 
QB algorithms under different speaking rates and noise 
condition, there was another testing database prepared. It is the 
broadcast news database, provided by Academia Sinica, Taiwan. 
It was recorded from radio stations and its speaking rate was 
different from that of TCC300. Three speakers were selected for 
the evaluation of the MAP adaptation and QB sequential 
learning mechanism. For each speaker, there were totally 30 
adaptation utterances. In the QB sequential learning, we used 
five utterances in each epoch and there were totally 6 epoches 
during the sequential learning process. The syllable error rate 
(SER) was averaged over these speakers. Those adaptation 
utterances per speaker were used for HMM’s and duration 
parameter sequential learning. We performed supervised 
learning. 

All utterances were sampled at 16 kHz with 16-bit 
resolution. Each frame was characterized by twelve 
Mel-frequency cepstral coefficients (MFCCs), one log energy 
and their derivatives. The cepstral mean subtraction (CMS) was 
applied for each utterance. In the following experiments, we 
carry out the HMM-based speech recognition with/without 
duration models and the MAP adaptation and QB sequential 
learning of different parametric duration distributions. 
4.2. Comparison of Speaking Rates and Baseline Recognition 
Performances 
First, the average speaking rates of two databases are compared 
in Table 1. Obviously, the speaking rate of broadcast news is 
much higher than those of TCC300. The performances of 
baseline speech recognition system with/without duration 
models are compared in Table 2. In this case, only ML duration 
estimation is performed. Clearly, the recognition performance 
using gamma duration model is superior to those using Poisson 
and Gaussian duration models. 

Database TCC300 Broadcast news

Male 3.55 5.50 Speaking rate
(syl/sec) 

Female 4.86 5.47 

Table 1. Comparison of speaking rates of two databases 
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With durations  Without 
duration

Gaussian Poisson gamma

SER 38.2 36.9 36.4 35.6 

Table 2. Syllable error rates (%) of the recognition system 
with/without duration models 

4.3. Evaluation of MAP Adaptation and QB Sequential 
Learning 

In Figure 1, we plot the recognition results of MAP adaptation. 
In this experiment, we conduct the adaptation for each testing 
speaker. Totally, thirty adaptation utterances are used to adapt the 
HMM’s and the associated duration parameters. In this figure, 
the performance improvement order from the best to the worst is 
the result using gamma duration with Gaussian prior, the one 
using Poisson duration with gamma prior and the one using 
Gaussian duration with Gaussian prior of batch adaptation. 
Although gamma duration achieves better recognition result, our 
other experiments show that the processing time using gamma 
duration is more expensive. 

Figure 2 shows the recognition results using QB sequential 
learning approach. In this part, we conduct the QB sequential 
adaptation for each testing speaker. Five utterances are used in 
each adaptation epoch for each speaker. The hyperparameters of 
HMM’s and duration parameters are also estimated in each 
epoch. From this figure, the performance improvement of 
incremental adaptation can be observed. The performance of 
sequential learning using Poisson duration with gamma prior is 
better than the one using Gaussian duration with Gaussian prior. 
It should be noted that the adaptation performance using Poisson 
duration with gamma prior is always superior to the one using 
Gaussian duration with Gaussian prior either in MAP batch 
adaptation or in QB sequential learning if we exclude the gamma 
duration. 

5. Conclusion 
We proposed the joint Bayesian learning framework of HMM’s 
as well as duration parameters. Three cases of Gaussian, Poisson 
and gamma densities for duration modeling were evaluated. ML 
estimation of duration parameters was described. In order to 
adapt duration models to a new speaker, we performed Bayesian 
learning and compensated the effect of speaking rate. MAP 
estimation of duration parameters was derived for speaker 
adaptation from clean TCC300 database to broadcast news 
speech database. The adaptation of HMM mean vectors and 
duration parameters did enhance the recognition performance. 
Furthermore, QB estimates for Gaussian and Poisson duration 
models were formulated because they were associated with 
conjugate priors. The reproducible prior/posterior property was 
applied to establish updating mechanism for prior statistics. 
Sequential learning of duration models was achievable using 
sequentially collected adaptation data in each epoch. The 
Poisson-based duration model is the best choice because its prior 
and posterior distributions are belonging to gamma distribution. 
The best performance was achieved when HMM mean vectors 
and duration parameters were simultaneously adapted. In the 
future, we will further investigate duration modeling using 
alternative distributions, e.g. alpha-stable distributions. 
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