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ABSTRACT

In this paper, we propose a model based on Dynamic Bayesian
Networks (DBNs) to integrate information from multiple audio
and visual streams. We also compare the DBN based system (im-

plemented using the Graphical Model Toolkit (GMTK)) with a

classical HMM (implemented in the Hidden MarkovModel Toolkit
(HTK)) for both the single and two stream integration problems.

We also propose a new model (mixed integration) to integrate in-

formation from three or more streams derived from different modal-

ities and compare the new model’s performance with that of a syn-
chronous integration scheme. A new technique to estimate stream

confidence measures for the integration of three or more streams

is also developed and implemented. Results from our implemen-

tation using the Clemson University Audio Visual Experiments
(CUAVE) database indicate an absolute improvement of about � �
in word accuracy in the -4 to 10db average case when making use

of two audio and one video streams for the mixed integration mod-

els over the sychronous models.

1. INTRODUCTION

In recent years, the task of noise robust automatic speech recogni-
tion has become an active topic with a number of techniques being

proposed to improve word accuracies in difficult environments.

The use of multi-stream models is one such technique [1]. The

streams may be multi-modal (audio and visual), or simply differ-
ent sets of features (MFCC, RASTA etc.) extracted from the same

speech data. In particular, streams that have complimentary infor-

mation have been used to improve recognition accuracies at low

SNR’s [2, 3]. However, one of the problems associated with using

more than one stream is the need for efficient models to combine
them. The goal of the fusion process should be to avoid catas-

trophic fusion (the combined stream performance is worse than

either of the streams used independently).

The approaches that have been used for integration of two or
more streams may be classified into three categories: feature fu-

sion (or early integration), decision fusion (or late integration) and

model fusion. Early integration makes the assumption that the

streams are synchronous, whereas in case of late integration the
streams are allowed to develop independently over time [4]. In

case of model fusion, various heuristic-based combination strate-

gies are used to form a unified HMMmodel from separately trained

HMMs [3]. At this time, model fusion seems to be the best tech-
nique to integrate information from two streams.

�
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Another issue related to integration of information from two or

more sources is the use of stream exponents. In cases, where dif-

ferent streams have similar performance (word accuracies) under

similar conditions (SNR), near optimum output may be obtained
without the use of stream exponents. However, when we are com-

bining two streams that have dissimilar performance, the use of

stream exponents is extremely important. For example, when we

are trying to integrate a visual stream and an audio stream, the per-
formance of the visual stream is independent of audio SNR, and

the performance of audio stream varies directly with SNR, hence

failure to use SNR dependent stream exponents under such cir-

cumstances can lead to reduced word accuracies.
In this work, we propose the use of DBN based models to

combine audio and visual streams. We also propose a mixed type

of DBN that can handle the integration of two or more streams and

suggest a technique to estimate stream exponents for multi-modal
multi-stream models with more than two streams. In section 2,

we describe multi-stream DBNmodels, section 3 describes the ex-

perimental setup and the results are discussed in section 4. The

implications of the results and future work are discussed in section
5.

2. MULTI-STREAM DBNMODELS

A Bayesian Network is a statistical model that can be used to rep-
resent collections of random variables and their dependencies. A

DBN is used to model random variables as they evolve over time

(e.g. as in speech). In this work, we use the graphical model struc-

ture for continuous speech given in [5] as our baseline model. The
goal of this work is to extend the baseline model for audio-visual

speech recognition in cases where more than two streams from in-

dependent sources are involved.

2.1. Synchronous and Asynchronous Models

A synchronous model assumes that all the streams are derived

from synchronous sources of information. This assumption is valid
when modeling information from the same modality of speech

that has been processed in different ways (e.g. MFCC, RASTA,

PLP, etc.). When we are combining information from two differ-

ent modalities (such as audio and video), this assumption is not
necessarily always true. It has been demonstrated that there can

exist a degree of asynchrony between the audio and visual modal-

ities [6], and representing this asynchrony in some cases can be

beneficial. Further studies of this phenomena are given in [7].
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Fig. 1. Mixed Type Multi-Stream Model

2.2. Mixed Models

The structure of our new mixed model is given in Figure 1. It can
be seen that it models streams processed from the voice input us-

ing a synchronous structure whereas the video stream is modeled

asynchronously with the ‘composite‘ audio stream. In cases where

we make use of a single audio stream and a single video stream
the mixed model reduces to an asynchronous multi-stream model.

Thus, the mixed model may be considered as a combination of a

synchronous and asynchronous multi-stream DBN.

In the synchronous part of the model, all the observation vari-
ables share one state variable, so that all audio streams are syn-

chronized at the state level. However, the video stream and com-

posite audio stream each depend on different state variables which

introduces the asynchrony between them. In order to model the
synchrony between the audio and video streams, they are made to

share one word variable thereby requiring that the two streams be

synchronized at the beginning of each word. It should be noted

that the variable State_Transition_2 is modeled as a child
of both State_2 and Word_Position_1. This is a random
dependency, not a deterministic one. The intent of modeling this

relationship is to limit the asynchrony between the two streams

which encourages, but does not require, the second stream to also
be synchronized at the end of each word. A complete description

of the variables used in the model their and CPD’s (conditional

probability distributions) may be obtained in [7].

3. EXPERIMENTAL SETUP

3.1. Database Description

We have used the Clemson University Audio-Visual Experiments

(CUAVE) database for all work in this paper. It consists of 36
speakers (19 male and 17 female) speaking digits in a connected

fashion. The video stream consists of frontal images of the speak-

ers with no rules regarding the position of the speaker within a

given frame. A detailed description of the database is given in [8].

Fig. 2. Figure showing the three stages during extraction of the
speaker’s mouth region.

3.2. Audio Feature Extraction

We have made use of the HTK feature extraction program to ex-

tract MFCC features. The speech input was processed using a
30ms Hamming Window, with the frame period set to 10ms. For

each frame 13 MFCC features were extracted; delta and acceler-

ation coefficients were appended to the MFCC features resulting

in a 39 dimensional MFCC D A feature vector. We have used a
toolkit from ICSI/UCBerkeley to generate the RASTA features [9].

The RASTA features were also processed in HTK format to gen-

erate RASTA D A features.

3.3. Visual Feature Extraction

The extraction of visual features starts with the detection of the

speaker’s eyes. The eye detection algorithm is described in [10].

Once the position of the speaker’s eyes are obtained, we make use
of the distance between the speaker’s eyes to estimate the approx-

imate position of the speaker’s mouth region (shown in first image

in Figure 2). Next, in order to obtain a more accurate fix on the

speaker’s mouth region we make use of Linear Discriminant Anal-
ysis (LDA) [11] to classify the pixels in the mouth region into lips

and non-lips. The HSI (Hue-Saturation-Intensity) color space is

used as input to the LDA stage. The optimal linear discriminant

is computed off-line using a set of manually segmented images of
the speaker’s mouth region from the CUAVE database. The LDA

stage results in a better estimate of the speaker’s mouth region.

The results of the LDA stage are shown in the second image in

Figure 2
In order to make the lip features rotation invariant, we make

use of principal component analysis (PCA) to estimate the angle of

rotation of the speaker’s mouth region. The first two eigenvectors

(the two vectors with the largest eigenvalues) obtained from a PCA
computation of the mouth region are used to estimate the rotation

angle and then the mouth region is corrected using an affine trans-

formation. We then down-sample the mouth region to a � � � � �

gray-scale intensity image, and then a 2D-discrete cosine trans-
form is applied. The last image in Figure 2 is the speaker’s mouth

region before the DCT is applied (it has been magnified for display

purposes). The upper 30 coefficients of the resulting computation

are retained (the DC value is also discarded.). Delta coefficients
are appended to the static video feature vector resulting in a 60 di-

mensional video feature vector.

The video features are extracted at 25Hz. Since, the audio

features were processed at 100Hz, the video features were inter-
polated to make them occur at the same frame rate as the audio

features.

3.4. Setup

The CUAVE database was divided into a testing set and a training

set. The testing set consisted of 12 speakers and the training set

consisted of 26 speakers, the speakers in each of the sets were cho-

sen randomly (two speakers are common to the testing and train-
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SNR(db) -4 4 6 10 12 Clean� �
0.3 0.55 0.70 0.75 0.85 0.95

Table 1. Audio Stream Exponents

ing sets). Our first goal was to compare the word accuracies for

GMTK and HTK under similar conditions when making use only

of a single stream (either audio or video). The audio stream made
use of MFCC D A features and the video stream features were ex-

tracted as described in section 3.3. The models were trained on

clean speech and then tested at various SNRs ranging from -4db to

12db (mis-matched condition).
Our second setup was to compare the word accuracies for

GMTK and HTK when making use of two streams i.e. an audio

stream and a video stream. In this case, since we are making use

of two streams with inherently different word accuracies, stream
exponents can be used to achieve the best balance between the two

streams, leading overall to the best accuracy improvement. The

multi-stream system implemented in HTK is described in [3]. We

have made use of the same stream exponents for both the HTK
and GMTK setups. The audio stream exponents for each of the

SNR’s are as shown in Table 1. The video stream exponents may

be computed from this table using
� � � � 	 � 


. The stream expo-

nents were estimated by making use of a reduced set. The reduced
training set and testing sets for the stream weight estimation were

obtained from the actual training (10 speakers) and testing sets (3

speakers). For a given SNR ( 	 � � � to � � � � ), � 

was varied from�

to � in steps of � � � �
, and the value of the stream exponent that

maximized the word accuracy was chosen. The parameters for the

asynchronous two-stream GMTK system were first bootstrapped

from the single stream models and then were jointly trained using

a few additional EM iterations.

The third setup is to model the integration of more than two

streams using DBN’s. All parameters for the asynchronous and

mixed models were bootstrapped from single stream models. One
of the main issues associated with implementing such a multi-

stream model is the estimation of stream exponents for each of the

streams. We adjust the stream weights such that they obey the fol-

lowing constraint,
� � � � � ! � # $ % & $ ! � � � � , where � � � � �

,� # $ % & $
and

� �
are the stream exponents for the MFCC, RASTA,

and video streams respectively. Until now, no algorithm has been

proposed to estimate the above parameters, however [12] is related

to this problem. We could use the same technique that was used to

estimate stream exponents in the case of two streams; however, in
this case we would have two free variables even after one of them

is fixed. Hence that approach would be tedious and inefficient. In

this paper, as a simple first attempt, we have made use of an ad-

hoc approach to estimate the stream exponents for the three stream
case. They are derived from the two stream case. For any given

SNR, we assume that the
� �
in the three stream case is essentially

the same as the
� �
in the two stream case and

� � � � � � * +, ,
where

� 

is the audio stream exponent for the two stream case. Al-

though, these might not be the optimum stream exponent values,

they serve as good starting points for investigating the feasibility

of mixed models for information fusion. In section 5 we suggest

an approach that could be used to estimate the stream exponents
in the three stream case. In all models, each stream is modeled

by 16 states per word (whole word models) and 4-mixtures per

state model. All the DBN based models were implemented using

GMTK [13]. The GMTK system was implemented on a Beowulf

Parallel Computing cluster with 16 nodes.

4. RESULTS

The results for the single stream case are given in Table 2. It can

be seen that on the testing set, at - / 1 � 	 � � � , there is an im-
provement of 2 � � 2 3 in the word accuracy for the GMTK system
over the HTK system. Overall, ( - / 1 � 	 � � � to � � � � ), the
GMTK system shows an improvement of about 8 � 8 3 . Another
interesting aspect of these results is that the improvement in word

accuracies is more pronounced in cases of low SNRs. The GMTK
video only recognizer performs slightly worse than the HTK video

only recognizer. A reason for this could be the use of the MFCC

training schedule (mixture-coefficient vanishing ratios and mixture

co-efficient split ratios) for training the video stream.

The two stream integration results are as shown in Table 3.
Here we compare the performance of similar HTK and GMTK

systems when fusing the audio and video streams. It can be seen

that the use of DBN’s to model two streams outperforms the HTK

system, by about
� 3 at an SNR of 	 � � � on the testing set for

the synchronous case. Overall, (averaged over 	 � � � to � � � � ) the
GMTK system outperforms the HTK system by about � 3 . Also
shown in Table 3 are the two stream asynchronous model results

for the GMTK system. It can be seen that the asynchronous system
gives a better word accuracy when compared to the synchronous

approach. This suggests that the best means of modelling the au-

dio and visual streams is to make use of asynchronous modelling.

Shown in table 4 are the results for the three stream case. In
this setup all the systems have been implemented in GMTK alone.

The entirely synchronous models perform better than the 3-stream

asynchronous models. This is similar to the results obtained in [7],

the reason being that the two stream MFCC and RASTA are inher-
ently synchronous and we are forcing them to be modeled by an

asynchronous structure. However, the mixed integration scheme

outperforms both the synchronous and the asynchronous types of

integration. It can be seen that there is an improvement of about
� 3 in word accuracy for the mixed models over the synchronous
multistream models at an SNR of 	 � � � on the testing set.

5. CONCLUSIONS AND DISCUSSIONS

In this paper we have described techniques to combine two or more

streams of information for speech recognition. Specifically, us-

ing GMTK we implemented and tested several multi-stream DBN

models for speech that incorporated multiple acoustic and visual
features. Results show that the use of DBN’s leads to significant

improvement in word accuracies. Hence the use of DBN’s is a sim-

ple and effective way of combining information from two or more

modalities. We have also shown that when combining informa-
tion from a number of sources, we need to account for the inherent

synchrony and asynchrony between the modalities. This point is

illustrated by comparing the results in the two stream and three

stream cases for the asynchronous models, in the two stream case
the asynchronous models perform better than synchronous models

whereas in the case of three stream models the converse is true.

The mixed models best account for the synchrony and asynchrony

between the audio and visual streams and hence perform the best.
However, an issue related to the multi-stream models (more

than two streams), is the estimation of stream exponents. In or-

der to estimate the stream exponent we could train a two stream

HMM on a reduced training set with one of the streams being the

I - 995

➡ ➡



Setup -4db 4db 6db 10db 12db Clean -4 to 12db
Audio Only MFCC D A (HTK) 31.00 65.57 75.67 84.82 89.33 98.00 69.28

Audio Only MFCC D A (GMTK) 37.46 71.33 79.34 84.33 90.41 97.92 72.57

Video Only (HTK) 53.33 53.33 53.33 53.33 53.33 53.33 53.33

Video Only (GMTK) 51.40 51.40 51.40 51.40 51.40 51.40 51.40

Table 2. Single Stream Results: Word Accuracies (in %) for the HTK and GMTK systems

Setup -4db 4db 6db 10db 12db Clean -4 to 12db

Two Stream Synchronous MFCC D A and Video (HTK) 63.13 76.67 82.33 89.11 92.33 98.33 80.71

Two Stream Synchronous MFCC D A and Video (GMTK) 68.33 79.67 82.33 88.11 94.72 98.64 82.63

Two Stream Asynchronous MFCC D A and Video (GMTK) 72.12 82.67 84.46 90.01 96.12 98.92 84.96

Table 3. Two Stream Results: Word Accuracies (in %)

Setup -4db 6db 10db Clean -4 to 10db

Three Stream Synchronous MFCC D A, RASTA and Video 66.12 84.14 90.11 98.10 80.12

Three Stream Asynchronous MFCC D A, RASTA and Video 66.10 79.12 87.40 97.92 77.54

Three StreamMixed MFCC D A, RASTA and Video 70.14 88.12 94.11 99.31 84.12

Table 4. Three Stream Results: Word Accuracies (in %)

composite MFCC and RASTA features and the other stream be-

ing the video stream. This setup could be used to estimate
� �
and

� � � � � 	 � � �  � �
. We could then construct another two stream

HMM, once again using a reduced training set, with one stream be-

ing MFCC and the other being RASTA. This setup could be used
to estimate

� � � � �
and

� � �  � �
, with the constraint that their

sum must be equal to the value estimated above. Hence, we are es-

sentially decomposing the stream estimation procedure to handle

two streams at any given time, as the stream exponents for the two
stream case may be easily estimated.
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