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ABSTRACT
In this paper, we propose an effective feature compensation 
scheme based on the speech model in order to achieve robust 
speech recognition.  The proposed feature compensation method 
is based on parallel combined mixture model (PCMM).  The 
previous PCMM works require a highly sophisticated procedure 
for estimation of the combined mixture model in order to reflect 
the time-varying noisy conditions at every utterance.  The 
proposed schemes can cope with the time-varying background 
noise by employing the interpolation method of the multiple 
mixture models.  We apply the ‘data-driven’ method to PCMM 
for more reliable model combination and introduce a frame-
synched version for estimation of environments posteriori.  In 
order to reduce the computational complexity due to multiple 
models, we propose a technique for mixture sharing.  The 
statistically similar Gaussian components are selected and the 
smoothed versions are generated for sharing.  The performance 
was examined over Aurora 2.0 and speech corpus recorded while 
car-driving.  The experimental results indicate that the proposed 
schemes are effective in realizing robust speech recognition and 
reducing the computational complexities under both simulated 
environments and real-life conditions. 

1. INTRODUCTION
The difference between the training and operating environments 
is a significant factor affecting and mostly degrading the 
performance of speech recognition system.  Background noise 
and channel distortion are typical sources of such performance 
degradation.  Putting these two environments on an equal 
footing is one of the most essential issues in the development of 
real-world applications using speech recognition technology. 

Spectral subtraction, CMN (Cepstral Mean Normalization) 
and model-based feature compensation are some of the 
prominent examples of the efforts employed to bring the 
operating environment closer to the training environment at the 
pre-processing level of the speech recognition system.  Another 
approach recently introduced is not directed at removing the 
noise components, but generating a speech model matched to the 
noisy environment at the training or decoding step. MAP 
(Maximum A Posteriori) and MLLR (Maximum Likelihood 
Linear Regression) adaptation techniques and PMC (Parallel 
Model Combination) method are included in this category [1-3]. 

In this paper, we focus on the Gaussian mixture model 
(GMM)-based feature compensation method of rendering 
improved recognition under the combined adverse conditions of 
additive background noise and channel distortion [4].  Among 

GMM-based methods, we have interests in PCMM (Parallel 
Combined Mixture Model)-based feature compensation method, 
which is known to have an effective performance without 
training procedure with the noisy speech database [5].  In this 
paper, the proposed PCMM scheme enables to cope with the 
time-varying noisy environments adaptively by employing the 
interpolation of multiple environment models.  In addition, we 
propose a technique of mixture sharing, in order to reduce the 
computational complexity due to multiple models. 

The paper is organized as follows.  We first review the 
PCMM-based feature compensation scheme and identify the 
relevant issues in Section 2.  We then describe the proposed 
scheme in Section 3 and 4.  The representative experimental 
procedures and results are presented and discussed in Section 5.  
Finally, in Section 6, we make our concluding remarks. 

2. PCMM-BASED FEATURE COMPENSATION
PCMM-based feature compensation is also based on GMM-
based method, which was first proposed by Acero and soon 
afterwards, Moreno designed a data-driven method called RATZ 
(Multivariate Gaussian Based Cepstral Normalization).  In 
RATZ, the statistical transformation of the clean speech’s 
cepstral distribution under the noisy condition is estimated from 
the noisy speech database and then noisy input feature vectors 
are compensated using these statistics [3][4].

Distribution of clean speech cepstrum can be modeled with 
K  Gaussian mixture as follows. 

K
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1
µxx                     (2.1) 

It is assumed that noisy environment causes the shift in the 
means and the compression or expansion of the covariance 
matrices of cepstral distributions.  Therefore, we can express the 
distribution of noisy speech as 

K
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Noisy input feature vectors are then compensated based on the 
MMSE (Minimum Mean Squared Error) estimator. 
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In the PCMM-based feature compensation, the correction factors 
kk Rr ,  are estimated from the noisy speech mixture model 

generated by combining the clean speech model and noise model, 
whereas RATZ obtains them from the noisy speech database 
training. 

For generation of noisy mixture model, PMC method is 
employed.  In PMC, the noise-corrupted speech model is 
generated using the clean speech model and noise model 
independently.  Therefore, it is known to exhibit an outstanding 
advantage in that it does not require additional training 
procedure with noisy speech database [2].  In the previous work 
[5], the ‘log-normal approximate’ method was employed to 
implement the on-line combination of mixture model.  In this 
paper, we apply the ‘data-driven’ method, which is more reliable 
to estimate the acoustic model, because the on-line model 
estimation is not employed in the proposed schemes.  The ‘data-
driven’ method can reduce the error due to approximation in 
combining the log-normal functions by actually adding the 
synthesized speech data and noise data. 

Considering the variations in mean and covariance assumed 
in RATZ, we can compute the correction factors as follows. 

kkk

kkk
~
~

R

µµr                              (2.4) 

Where 
kµ~ and

k

~ denote the mean and variance of kth
component in the noise-corrupted mixture model, which is 
generated through the model combination. 

In the previous work, to cope with the time-varying 
background noise, the noise model adaptation was applied.  To 
reflect the adapted noise on the mixture model, we need to 
accomplish the mixture model combination at every utterance.  
It requires huge computational complexities because of 
conversion between linear spectrum, log spectrum and cepstral 
domain.  In this paper, we propose more efficient PCMM-based 
method by employing multiple models which reflect the 
environments to be expected. Utilizing the multiple models 
estimated at off-line can be effective to compensate input feature 
adaptively under the time-varying noisy condition and it 
eliminates the on-line model combination procedure. 

3. INTERPOLATION OF MULTIPLE MODELS
The feature compensation with a single noisy model assumes the 
environment where the recognition is going to be performed is 
known, enabling the algorithm to make use of previously trained 
correction factors.  However in more realistic conditions, this 
might not be possible.  In the method of multiple models, the 
posterior probabilities of each of E possible environments are 
estimated over the input noisy speech [4].  Utilizing the multiple 
models which reflect the nosy environments to be expected can 
be solution to coping with the time-varying noise situation. 

In this paper, we modify the estimation procedure into the 
frame-synched version for frame-by-frame processing as follows.  
Given T

t
t ],...,,[ 111 yyyY , the posterior probability of the 

environment i over t
1Y  can be re-written as 
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From the (2.3), the clean feature can be restored frame-
synchronously as follows. 
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When the background noise types are known to be a specific 
number such as the car-driving condition, multiple-model 
method can be more effective than the adaptation techniques or 
on-line estimation of noise components in terms of 
computational complexity. 

If we utilize a clean mixture model as one of multiple models, 
the performance of recognition system can be maintained under 
the high SNR conditions.  In the addition, the interpolation of 
clean model and noisy model brings the effect of adaptation 
under time-varying or unknown SNR conditions. 

4. MIXTURE SHARING
The computation amounts in the implementation of GMM-based 
feature compensation methods depend dominantly on the 
number of the Gaussian components to be computed.  Therefore, 
the computational complexities are proportional to the number 
of multiple models used for the model interpolation method. 

In this paper, we propose a technique of sharing the 
statistically similar components among the noisy mixtures in an 
effort to reduce the computational load.  The Gaussian 
components similar each other are selected in terms of Kullback-
Leibler distance and then the common components for sharing 
are generated through smoothing the similar ones.  The selection 
procedure is as a following pseudo algorithm. 

Step 0 : 
SKddd CD },,...,,{ 21

Kkggdistkld
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        (4.1) 

Step 1 : Didk minarg
Step 2 : }{},{ kSS dk DDCC
Step 3 : if 

SS KN )(C , then stop. 
Else, then go to Step 1.

Where 
kd  is sum of Kullback-Leibler distances of the kth

Gaussian component of each environment mixture 
keg ,

 from the 

kth one of the first environment 
kg ,1

 and )(N  denotes the 

number of elements in a set.  Finally, we obtain the set 
SC

which contains 
SK  number of the indices of Gaussian 

components to be shared.  The parameters of the smoothed 
Gaussian components for sharing are computed by following 
equations. 
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Therefore, we can replace the likelihood function of Gaussian 
components included in the set 

SC  by the sharing components. 
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Fig 1. Concept of the mixture sharing. 
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The correction factors whose indices are included in set 
SC  can 

be shared also. 
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By sharing the components, we can reduce calculation amount 
over KE  number of Gaussian likelihood functions to 

)( SS KKEK , it leads to computational reduction as much as 

SKE )1( .  Fig. 1 illustrates the concept of the mixture sharing 
technique. 

5. EXPERIMENTS AND RESULTS 
5.1 Performance testing on Aurora 2.0 
We followed the Aurora2.0 evaluation procedure for the 
performance verification.  Along with all identical conditions 
suggested in the Aurora2.0 procedure, we used c0 instead of log-
energy for the convenience of PCMM implementation. 

First, we examined the performance of the baseline system in 
comparison with that of the existing preprocessing algorithms, 
with regard to the environmental robustness of their speech 
recognition.  The typical algorithms include spectral subtraction 
(SS), and cepstral-mean-normalization (CMN). In spectral 
subtraction, the background noise is estimated using the 
minimum statistics method with a time delay of about 250msec.  
PCMM1 and PCMM2 denote the PCMM-based feature 
compensation methods using the combined model with the gain 
matched to the testing SNR conditions.  In PCMM1 and 
PCMM2, ‘log-normal’ and ‘data-driven’ methods are employed 
for model combination respectively.  For the clean speech 
modeling, the 128-Gaussian mixture is estimated using the clean 
training data which is identical to the data used in HMM 
modeling.  The noise model is estimated with a single Gaussian 
distribution.

Table 1 shows the performance of the baseline system and 
the existing algorithms.  From the results, PCMM with the noise 
model matched to the testing noisy conditions shows the 
superior performance to spectral subtraction and CMN or 
combination of these techniques.  From the fact that PCMM2 
outperforms PCMM1 slightly, we can see that ‘data-driven’ 
model combination is more reliable than ‘log-normal’ in the 

Table 1. Word accuracy for baseline system to car noise 
condition in Aurora 2.0. (%) 

 Baseline SS SS+CMN PCMM1 PCMM2

Clean 98.84 98.63 98.87 98.84 98.84 
20dB 96.42 97.38 97.76 97.91 97.94 
15dB 87.62 93.98 95.53 97.11 97.08 
10dB 61.71 81.42 86.22 93.86 93.86 
5dB 26.87 50.16 59.59 81.81 82.20 
0dB 10.38 17.66 25.05 53.09 53.92 
-5dB 8.41 5.99 14.43 21.77 22.10 
Avg. 56.60 68.12 72.83 84.76 85.00 

Table 2. Word accuracy for the proposed schemes to car noise 
condition in Aurora 2.0. (%) 

 IP SS+IP SS+IP+
CMN 

SS+IP64
+CMN 

SS+IP96
+CMN 

Clean 98.84 98.84 98.87 98.87 98.87 
20dB 97.88 97.88 98.18 98.03 97.32 
15dB 97.35 97.17 97.91 97.73 96.93 
10dB 93.29 94.57 95.35 94.75 94.42 
5dB 81.78 86.46 87.56 86.28 87.06 
0dB 53.80 63.41 65.37 62.90 64.54 
-5dB 22.79 29.17 28.18 24.52 25.56 
Avg. 84.82 87.90 88.87 87.94 88.05 

model estimation.  In the entire experiments, we employed ‘data-
driven’ model combination for the PCMM implementation. 

Under the identical condition with baseline test, we 
accomplished the performance evaluation of the proposed 
scheme.  For the interpolated PCMM, we generated three 
different SNR noisy mixture models, that is, 17dB, 7dB and -
2dB.  Considering the clean speech model as one of 
environments, the number of the multiple models is four.  For 
the comparison, we examined the performance in the following 
combinations. 
1) IP : Interpolated PCMM-based feature compensation. 
2) SS+IP : Spectral Subtraction + Interpolated PCMM 
3) SS+IP+CMN : Spectral Subtraction + Interpolated PCMM + 
Cepstral Mean Normalization 
4) SS+IP64+CMN: SS + Interpolated PCMM with 64 Gaussian 
components shared + CMN 
5) SS+IP96+CMN: SS + Interpolated PCMM with 96 Gaussian 
components shared + CMN 

As shown in Table 2, we can see that the proposed feature 
compensation schemes are effective under the noisy condition 
and these figures present their superior performances over the 
existing algorithms in Table 1.  The PCMM with the interpolated 
models shows a quite similar performance to PCMM with the 
SNR-matched single model in Table 1.  This proves that the 
interpolated PCMM is effective in the adaptive feature 
compensation under the SNR changing environment at every 
utterance.  We could obtain the improved results by applying 
spectral subtraction before PCMM processing.  It shows that the 
interpolated PCMM is suitable to the unknown SNR situations 
produced by the noise subtraction.  The interpolated PCMM 
with the proposed mixture sharing technique (IP64, IP96) shows 
the slightly lower performance compared to the non-sharing case.  
From these results, the mixture sharing is useful to reduce the 
computational complexities with holding the original 
performance.

I - 991

➡ ➡



Table 3 and Table 4 show the recognition performance over 
the all sets of clean-condition training and multi-condition 
testing in Aurora 2.0.  The results in Table 4 show that the 
proposed feature compensation schemes have consistent 
performances under various kinds of additive background noises 
and even the channel distortions such as in Set C.  Table 5 shows 
the relationship of the performance and computational 
complexity reduction.  The figures in the parenthesis in the first 
column are the percentages of relative improvement compared to 
the case of non-sharing, SS-IP-CMN.  The figures in the 
parenthesis in the second column are percentages of the number 
of Gaussian components to be computed to the full components.  
In case of 64-component sharing, we can obtain 25% reduction 
in computation with only 3.16% decrease in performance.  When 
96 components shared, 37.5% computational reduction is 
achieved with just 4.18% decrease of performance  

5.2 Performance testing on real car-driving conditions 
To verify the effectiveness of the proposed schemes in the 

practical situations, we accomplished the recognition testing on 
the speech corpus collected under real car-driving conditions.  
We used Car01 and CarNoise01 released by SITEC (Speech 
Information Technology & Industry Promotion Center) [6]. 
Car01 contains the Korean speech utterances recorded under car-
driving with the speed of 80km/h and CarNoise01 contains the 
noise samples recorded at the various driving situations. 

For recognition testing, we choose 548 vocabulary set in 
Car01, which consists of control command words in the car.  
4,384 utterances recorded via a head-set microphone (channel 1) 
are used for clean HMM training and 1,096 utterances for noisy 
condition testing, which are recorded via a directional 
microphone located at the center of driver’s sun visor (channel 
4).

Table 6 shows the performance of the baseline system and 
conventional methods over the Car01 samples.  The 
performances of the proposed schemes are shown in Table 7.  
PCMM denotes the PCMM-based method with a single model 
and the noise model for the model combination was estimated 
from the noise samples in CarNoise01, which are recorded while 
driving at speed of 80km/h.  For interpolated PCMM (IP), we 
used three kinds of noise models which are estimated from the 
noise samples of 50km/h, 80km/h and 100km/h.  From the 
results, we can see that the proposed schemes are also effective 
in the real-life situations.  The results in Table 8 prove that the 
proposed mixture sharing technique is very useful to reduce the 
computational complexity under real car-driving conditions. 

6. CONCLUSIONS 
In this paper, we have proposed an efficient feature 
compensation algorithm based on PCMM method.  We 
employed interpolation of multiple environment models and 
proposed a technique for mixture sharing to reduce 
computational complexity.  The experimental results show that 
the proposed scheme is considerably effective in both the 
simulated adverse environments and real car-driving condition.
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Table 3. Word accuracy for the baseline system to all sets of 
clean-condition training and multi-condition testing in Aurora 
2.0. (%) 

 Set A Set B Set C Avg. 

Baseline 59.59 57.18 66.81 60.07 
SS 67.70 65.00 74.85 68.05 

SS-CMN 73.32 76.72 74.44 74.90 

Table 4. Word accuracy for the proposed schemes to all sets of 
clean-condition training and multi-condition testing in Aurora 
2.0. (%) 

 Set A Set B Set C Avg. 
(Relative Imp. %)

IP 85.35 83.75 70.53 81.75 (52.56) 
SS+IP 86.43 84.00 78.07 83.79 (58.41) 

SS+IP+CMN 87.72 85.66 83.71 85.96 (64.31) 
SS+IP64+CMN 86.72 84.82 82.75 85.17 (62.28) 
SS+IP96+CMN 86.33 84.63 82.59 84.90 (61.62) 

Table 5. Relationship of performance and reduction in the 
Gaussian number on the testing of all sets in Aurora 2.0. (%) 

Relative 
improvement 

Components to be 
computed 

SS+IP+CMN 64.31 512 
SS+IP64+CMN 62.28 (96.84%) 384 (75.0%) 
SS+IP96+CMN 61.62 (95.82%) 320 (62.5%) 

Table 6. Word accuracy for the baseline system to the real car-
driving condition, Car01 testing. (%) 

Clean (ch1) Noisy (ch4) SS (ch4) SS-CMN (ch4) 
94.16 58.76 82.94 88.96 

Table 7. Word accuracy for the proposed schemes to the real 
car-driving condition, channel 4 of Car01. (%) 

PCMM IP SS-IP-CMN SS-IP64-CMN
88.96 88.96 91.33 91.24 

Table 8. Relationship of performance and reduction in the 
Gaussian number on channel 4 of Car01 testing. (%) 

Relative 
improvement 

Components to be 
computed 

SS-IP-CMN 78.98 512 
SS-IP64-CMN 78.76 (99.72%) 384 (75%) 
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