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ABSTRACT

In this paper, we propose to compensate noise in the log-spectral
domain for robust speech recognition based on a nonlinear envi-
ronmental model. In our approach, starting from the original non-
linear speech distortion model in the feature domain, we derive the
minimum mean square error (MMSE) estimation of clean speech
signal given a noisy observation, which turns out to be an inte-
gral of a complex nonlinear function. In this work, we propose
to use a numerical method to solve the above nonlinear integral.
It requires higher computational complexity than the normal lin-
ear approximation methods but it is usually affordable since calcu-
lation is performed entirely in the pre-processing feature domain
without involving any change in speech decoders. Experimental
results show that the proposed nonlinear method outperforms the
conventional Vector Taylor Series (VTS) method in terms of ASR
performance when dealing with artificial white Gaussian noises as
well as true hands-free noisy speech, especially in low SNR levels.

1. INTRODUCTION

In the past decade, the performance of automatic speech recog-
nition (ASR) has been significantly improved. More and more
ASR systems are being deployed in many real-field applications.
In many situations, these speech recognition systems must be op-
erated in some adverse environments, where ambient noise be-
comes the major hurdle to achieve high-accuracy recognition per-
formance. How to improve environmental robustness of ASR has
been intensively studied in the speech community. In the litera-
ture, a variety of noisy speech recognition techniques usually fall
into two main categories. In the first one, we try to remove or
compensate the effect of noise in speech signals prior to the ac-
tual recognition procedure. The noise compensation methods can
be performed in the time domain (such as many early speech en-
hancement methods), the spectral domain, or the real feature do-
main used by most speech recognizers, such as the log-cepstrum,
LPC-cepstrum, MFCC, or etc. It has been shown that the meth-
ods applied to the ASR feature domains usually yield the better
performance in terms of improving ASR noise robustness. The
most popular techniques in this category include spectral subtrac-
tion, Wiener filtering, transformation based on stereo data, linear
noise compensation based on Taylor series approximation, feature
domain stochastic matching, and so on. In second category, the ef-
fect of noise is compensated within speech recognition procedure.
It usually involves adapting or modifying acoustic models (usually
HMM’s) of the ASR systems to match the noisy speech feature
in a new testing environment. The methods applied in the HMM

model domain always are more computationally expensive than
others. The representative methods in the category include parallel
model combination (PMC), model adaptation using MLLR (max-
imum likelihood linear regression) or MAP (maximum a posteri-
ori), Jacobian environment adaptation, speech and noise decompo-
sition, model space stochastic matching. It is well known that the
distortion caused by additive ambient noises is highly non-linear
in the log-spectral or cepstral domain. However, due to compu-
tational complexity issue, most noise compensation methods for
ASR are approximated by some linear functions, such as in simple
bias removal, an affine transformation, linear regression, first or-
der Taylor series expansion, and so on. In the literature, there are
only some limited efforts to compensate noise with any non-linear
ways, such as higher order Taylor series expansion, neural net-
works under the framework of stochastic matching[8]. In a recent
work [5], a nonlinear method called ”optimal filtering” is proposed
to compensate noisy speech.

In this study, we propose to compensate additive noise in the
log-spectral domain based on its original non-linear distortion func-
tion. We assume the clean speech follows a Gaussian mixture
model in the log-spectral domain and noise signal is a single Gaus-
sian distribution. Given any noisy speech observation, we estimate
the clean speech by using the original nonlinear distortion function
among noise, clean and noisy speech based on the MMSE (mini-
mum mean square error) criterion. The MMSE estimation of clean
speech ends up with a complex integral. In this work, we propose
an algorithm to use some numerical methods to solve the integral.
At last, the estimated clean speech will be mapped from the log-
spectral domain into the MFCC domain, and sent to a speech rec-
ognizer for the recognition results. The proposal method has been
examined in many robust speech recognition experiments. The
results show that the proposed nonlinear method outperforms the
conventional Vector Taylor Series (VTS) method in terms of ASR
performance when dealing with artificial white Gaussian noises as
well as true hands-free noisy speech, especially in low SNR levels.

2. ENVIRONMENTAL MODEL FOR SPEECH IN
ADDITIVE NOISE

Assume we have clean speech x(t) in the time domain and x(t) is
corrupted by an independent ambient noise n(t) (also in the time
domain). The resultant noisy speech can be expressed in the time
domain as:

y(t) = x(t) + n(t) (1)

Usually we can assume x(t) and n(t) are statistically independent.
If we convert the signals into the log-spectrum domain (either
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linear or Mel-scale), the above simple relation becomes a complex
nonlinear function (see [1]). For d-th filter bank (or d-th frequency
bin), we have

yd = xd + ln
`
1 + end−xd

´
(2)

If we assume the independence between all different filter banks,
then we can drop the subscript d for clarity. We just repeat the
same operation for all different filter banks (or feature dimensions).
Hereafter, we use letters in bond to represent the corresponding
signals in the log-cepstrum domain, i.e., y denotes noisy speech
in the log-cepstrum domain, x for clean speech and n for noise.
Then, we can have the following three equivalent functions for y,
x and n:

y = x + ln
`
1 + en−x´

(3)

x = ln (ey − en) (4)

n = x + ln
`
ey−x − 1

´
(5)

3. MMSE ESTIMATION OF CLEAN SPEECH

Based on the above non-linear environmental model, for any given
noisy speech feature vector y, we will try to estimate a clean
speech x̂ in the MMSE (minimum mean square error) sense. With-
out losing generality, we assume the clean speech feature vector
x = {x1, x2, · · · , xD} in the log-spectral domain follows a mul-
tivariate Gaussian mixture model (GMM) as:

p(x) =

KX
k=1

wk · N (x | µxk, σ2
xk)

=
KX

k=1

wk ·
DY

d=1

1p
2πσ2

xkd

· e−
(xd−µxkd)2

2σ2
xkd (6)

where µxk = {µxk1, µxk2, · · · , µxkD} and σ2
xk = {σxk1, σxk2,

· · · , σxkD} are mean and variance vectors of k-th Gaussian mix-
ture, and wk is the weight of k-th mixand with the constraintPK

k=1 wk = 1. The GMM model of speech signals may be con-
stant for all frames in an utterances, or may change from one frame
to another. In the former case, we can train a generic GMM from
clean speech data. In the latter one, for any a particular feature
vector, we can use a proper HMM state from the whole HMM sets
for clean speech.

Besides, we assume noise signals in the log-spectral domain
follows a single Gaussian distribution as:

p(n) = N (n | µn, σ2
n) =

DY
d=1

1p
2πσ2

nd

· e−
(nd−µnd)2

2σ2
nd (7)

where µn = {µn1, µn2, · · · , µnD} and σ2
n = {σn1, σn2, · · · , σnD}

are mean and variance vectors of noise signals. They can be esti-
mated from some initial noise frames in an utterance. Alterna-
tively, if the clean speech distribution p(x) is known, µn and σ2

n

can also be refined based on the EM algorithm.

3.1. Deriving the distribution for noisy speech y

Given the pdf’s of clean speech x and noise n in eqs.(6) and (7),
as well as the environmental model for noisy speech y in eq.(3),
here, we are interested in deriving a conditional distribution of y
given clean speech x, i.e., p(y|x). If x is given, y can be viewed

as a transformation from the Gaussian random variable n (with its
distribution in eq.(7)) according to eq.(3). If x is fixed, from eq.(3)
we know the transformation from n to y is a one-to-one monotonic
mapping. Therefore, if we assume independence among all vector
dimensions, p(y|x) can be derived as:

p(y|x) ≡
˛̨
˛̨dn
dy

˛̨
˛̨ · p(n)

˛̨
˛̨
n=x+ln(ey−x−1)

=

DY
d=1

˛̨̨
˛dnd

dyd

˛̨̨
˛ · p(nd)

˛̨̨
˛
nd=xd+ln(eyd−xd−1)

=
DY

d=1

1p
2πσ2

nd

· ψ(xd, yd)

ψ(xd, yd) − 1
· e−

[xd−µnd+ln(ψ(xd,yd)−1)]2

2σ2
nd

(8)

where we denote ψ(x, y) = ey−x.

3.2. MMSE Estimation of Clean Speech

Given a noisy speech vector y0 = {y01, y02, · · · , y0D}, it is well
known that the MMSE estimation x̂ = {x̂0, x̂1, · · · , x̂D} of clean
speech is calculated as x̂ = Ex[x | y0]. Therefore, we have

x̂ = Ex[x | y0] =

Z Z
x · p(x | y0) dx

=

Z Z
x · p(x) · p(y0|x)

p(y0)
dx =

R R
x · p(x) · p(y0|x) dxR R

p(x) · p(y0|x) dx

=

PK
k=1 wk

R R
x · N (x | µxk, σ2

xk) · p(y0|x)dxPK
k=1 wk

R R N (x | µxk, σ2
xk) · p(y0|x)dx

(9)

From eq.(4), we can see if given y0d the valid range for xd is
(−∞, y0d]. If we still assume the independence among all vector
dimensions, we can calculate each dimension x̂e (e = 1, 2, · · · , D)
of x̂ independently. We replace p(y0|x) with the right hand of
eq.(8), we finally derive x̂e as:

x̂e =

PK
k=1 wk · Ake · QD

d=1,d�=e BkdPK
k=1 wk · QD

d=1 Bkd

(10)

with

Ake =

Z y0e

−∞
xe · Uk(xe|y0e) dxe (11)

Bkd =

Z y0d

−∞
Uk(xd|y0d) dxd (12)

Uk(xd|y0d) =
1

2πσxkdσnd

ψ(xd, y0d)

ψ(xd, y0d) − 1
e
− (xd−µxkd)2

2σ2
xkd

e
− [xd−µnd+ln(ψ(xd,yd0)−1)]2

2σ2
nd (13)

3.3. A Numerical Solution

Obviously, we need solve the integral calculation in eq.(10) with
some numerical methods. Since we have limx→−∞ Uk(x|y0) =
limx→−∞ x · Uk(x|y0) = 0 and limx→y0 Uk(x|y0) = 0 (see
[3] for derivation), we can define the lower bound l and the upper
bound u for the numerical integral as follows:

ukd = y0d (14)
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lkd = min(y0d, ukd) − ε · σxkd (ε > 3) (15)

Then we uniformly partition the interval [lkd, ukd] into J equal-
length segments as:

lkd = xkd0 < xkd1 < xkd2 < · · · < xkdJ−1 < xkdJ = ukd

(16)
where we have xkdj+1 = xkdj + ∆kd with ∆kd = ukd−lkd

J
. We

use a linear approximation in each of these segments [xkdj , xkdj+1],
so the equation (10) can be approximated as:

x̂e =

PK
k=1 wk ·Mke · QD

d=1,d�=e NkdPK
k=1 wk · QD

d=1 Nkd

(17)

where

Mke = ∆ke

»
xke0Uk(xke0|y0e) + xkeJUk(xkeJ |y0e)

+ 2
J−1X
j=2

xkejUk(xkej |y0e)

–
(18)

Nkd = ∆kd

»
Uk(xkd0|y0d)+Uk(xkdJ |y0d)+2

J−1X
j=2

Uk(xkdj |y0d)

–

(19)
As pointed out in [5], when (yd − µnd)/σnd grows, the func-

tion Uk in eq.(13) may converge to a Dirac δ-function centered
somewhere near yd. In this paper, we adopt a simple solution to
deal with this problem. If (yd − µnd)/σnd > τ (τ is a preset
threshold; In our experiments, we fix τ = 10.0), the above func-
tion will be approximated with a δ-function centered at yd, i.e.,
N (yd|µxk, σ2

xk) · δ(xd − yd). In this case, the above integral can
be calculated in closed-form without using the above numerical
method.

4. NONLINEAR NOISE COMPENSATION FOR ROBUST
SPEECH RECOGNITION

It is well known that mismatches caused by additive noise corrup-
tion can seriously degrade performance of speech recognition. In
this study, we assume that we have a set of HMM models trained
from clean speech data. These HMM models will be used to
recognize some noisy speech utterances. We know, most speech
recognition systems use speech feature in the cepstral domain, e.g.,
MFCC’s. But the above non-linear noise compensation method
must be performed in the log-cepstral domain. First of all, we
train a GMM model for clean speech in the log-cepstral domain,
i.e. p(x), based on clean speech data in training set. Then model
parameters for p(x) will be fixed during noise compensation stage.

For each test noisy speech utterance, we compute the feature
vectors in the log-spectral domain as �Y = {�y1, �y2, · · · , �yT },
then we do

1. Initialize the mean µn and variance σn of the noise distri-
bution p(x) using the first N frames of the utterance. We
typically use N = 10.1

1We assume the fi rst 10 frames, i.e. 100 msec in usual frame rate,
of each utterance are non-speech segment, which is reasonable in most
situations.

2. Given clean speech model p(x), refine the noise mean µn

according to the EM algorithm based on the whole utter-
ance �Y, as in [2]. For simplicity, we don’t refine the noise
variance σ2

n. We simply re-scale the noise variances for all
dimensions with a constant ρ. From experiments, we find
an acceptable range for ρ is [2.0,4.0]. In the following ex-
periments, we fix ρ = 3.0 unless stated explicitly.

3. Based on the refined noise model p(n) and clean model
p(x), we compensate �Y frame by frame. More specifically,
for each vector dimension ytd in each frame {�yt | 1 ≤ t ≤
T}, we use eq. (17) to obtain its MMSE estimation.

4. The compensated vectors are mapped from the log-spectral
domain into the MFCC domain by using the DCT transfor-
mation. Then the resultant feature vectors can be sent to the
recognizer for recognition results.

5. EXPERIMENTS

5.1. Database and Experimental Setup

Our noise compensation algorithm is evaluated on an hands-free
database (CARVUI database 2) recorded inside a moving car. The
data was collected in Murray Hill, NJ area, under various driv-
ing conditions (highway/city roads) and noise environments (with
or without radio/music in the background). About 2/3rd of the
recordings contain music and babble noise in the background. Si-
multaneous recordings were made using a close-talking micro-
phone and a 16-channel microphone array of first order hypercar-
dioid microphones mounted on the visor. A total of 56 speak-
ers participated in the data collection, including many non-native
speakers of American English. The recorded text is made of var-
ious materials, including phonetically balanced TIMIT sentences,
some digits strings with 1 to 7 digitsm and about 85 short com-
mand words, like ”window up”, ”turn radio off”, etc. The speech
material from 50 speakers is used for training, and the 6 remaining
speakers is used for test, leading to a total of 4417 utterances avail-
able for training and 993 utterances for test. The data is recorded at
24kHz sampling rate and is down-sampled to 8kHz and followed
by a MFCC feature extraction step for our speech recognition ex-
periments. The recognition task consists of command words and
digits strings of unspecified length, modeled by a finite state gram-
mar. In our experiments, data from 2 channels only are used. The
first one is the close-talking microphone (CT), the second one is
a single channel from the microphone array, referred to as hands-
free data (HF) hereafter. The average SNR is about 21 dB for the
CT channel and 8dB for the HF channel. In our experiments, we
used 39-dimension feature vector, consisting of 12 MFCC’s and
C0 energy, their delta and delta-delta. A set of tri-phone models is
built on the CT training data using a decision tree tying algorithm
with aggressive tying given the limited amount of training data.
The standard Viterbi decoder is tuned on the CT test data, leading
to a string error rate (SER) of 3.7%. When recognizing the HF
test data, the performance degrades significantly, down to 26.6%
in SER. For the noise compensation purpose, a 128-Gaussian mix-
ture model is trained in the MFCC domain on the same CT training
data and then mapped to the log-spectral domain.

Based on the above experimental setup, in this study, we will
examine the proposed nonlinear noise compensation method in

2We acknowledge Bell Labs, Lucent Technology to allow us to evaluate
our algorithm on the CARVUI database.
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SNR baseline VTS new

∞ dB 3.7 4.0 4.1

15 dB 30.8 20.2 19.6
10 dB 54.2 32.7 31.2
5 dB 77.3 57.3 50.9
0 dB 87.6 74.2 69.4

Table 1: The ASR performance comparison in string error rate (in
%) by using different noise compensation methods. The baseline
means the corrupted CT data is directly sent to the decoder without
any process, the VTS means the data is pre-processed by the VTS
method, the new means the data is pre-processed by our nonlinear
noise compensation method.

terms of ASR performance improvements and compare with other
conventional methods with a linear approximation, such as the
VTS method in [4, 2]. In our new method, we set the threshold
τ = 10.0, the noise variance scale ρ = 3.0, the lower bound
parameter in eq.(15) ε = 3.0. And we use the interval segment
number J = 100.

5.2. Experiments on artificial white Gaussian noises

In the first set of experiments, we evaluate our method on artifi-
cial white Gaussian noises. The computer-generated white Gas-
suan noises are added into the CT test data in the time domain
at various SNR levels. The corrupted CT test data are processed
in the log-spectral domain with our nonlinear noise compensation
method or the VTS method. Then the compensated speech is con-
verted into MFCC’s and sent to the decoder for recognition which
uses the triphone HMM’s trained in the original CT training data
set. The recognition results are shown in Table 1. From the re-
sults, it is shown that the baseline performance drops quickly as
the noise level increases, from 3.7% in SER in clean CT data down
to 87.6% in SER when white noise is added at SNR 0dB level.
The VTS method largely improves recognition performance over
the baseline across all examined SNR levels in mismatched condi-
tions. When the VTS method is used to process the clean CT data,
it degrades the recognition performance slightly, down from 3.7%
in SER to 4.0%. The results also show that our new nonlinear noise
compensation method clearly outperforms the conventional linear
approximation VTS method in all mismatched conditions. Espe-
cially when the noise level is high, the improvement over VTS is
quite significant, e.g., in SNR 5dB level the new method achieves
6.4% absolute SER reduction over the VTS, from 57.3% down to
50.9%. When processing the clean CT data, the new method ob-
tains a similar performance, 4.1% in SER, as the VTS.

5.3. Experiments on hands-free (HF) data

Our new approach is also evaluated in some true hands-free noisy
speech data. In this set of experiments, the HF test data set is
pre-processed by using VTS or our new nonlinear method before
sending to the decoder for recognition based on the pre-trained
triphone HMMs. The ASR performance comparison is shown in
Table 2. From the results, we can see the baseline performance
(without any noise compensation) drops to 26.6% in SER and the
VTS achieves 19.9% while our new method yields 19.0% in SER
in this case, which is a moderate improvement over the VTS.

baseline VTS new

HF 26.6 19.9 19.0

Table 2: The ASR performance comparison in string error rate (in
%) by using different noise compensation methods to pre-process
true hands-free (HF) noisy speech data.

6. DISCUSSIONS

In some cases, the new approach achieves some encouraging per-
formance gain over the VTS method but it requires much more
computation than the VTS in the pre-processing stage. It is still
possible to speedup the numerical integral calculation in the new
method further, e.g., in many case if we can predict the total inte-
gral values in eqs.(18) and (19) are small, we may be able to use
some simple approximation to avoid the numerical method. More-
over, when we derive the original distortion model in eq.(2), we
simply ignore the phase difference between speech and noise sig-
nals. The experiments show that such a simplification significantly
affects the accuracy of the MMSE estimation when we strictly fol-
low the distortion function. At last, unlike in 1st order VTS, noise
variance σn also plays a role in the new method. It becomes a
critical issue how to estimate noise variance precisely. All these
issues are still under investigation and we will be able to report
more results in the conference.
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