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ABSTRACT

In our previous work ([1]), we investigated a new approach to ro-
bust speech recognition. An exact procedure was developed to fil-
ter noisy cepstral coefficients in the mean-square-error sense, and
it was shown that this method outperformed the well known Vec-
tor Taylor Series (VTS) approach, which in turn is based on linear
approximations to the non-linear filtering problem. Unfortunately,
the procedure presented involved several integral equations with
no known closed form solution. Numerical integration techniques
was needed, which in turn led to slow performance, and in some
cases, numerical problems. In this work we address this problem
by using piecewise approximations to the integrands, which in turn
yield closed form solutions. The revised procedure is tested on a
subset of the Aurora 2 database, and the results are compared with
the original numerical integration based approach, as well as VTS.

1. INTRODUCTION

It is a well known fact that mismatch between training and test
conditions has a significant impact on the performance of an ASR
system. Such mismatches can take the form of unknown channels
when various microphones or room impulse responses are encoun-
tered, or more general mismatches due to speaker variations like
accent, gender and speaking rate. Another type of mismatch, and
the topic of this work, is the case of additive noise. This is of spe-
cial concern when an ASR system is to be deployed outside of a
controlled environment, for instance in a moving car, an environ-
ment crowded by people or in a military environment.

There are several approaches that can be used to compensate
for the additive noise. Many approaches fall into the model adap-
tation category, aiming to tune the model to the new operating
conditions. Any well known adaptation method like MLLR[2] or
MAP[3] can in principle be used, but when the mismatch is known
to be due to some additive noise it is prudent to try to use this infor-
mation to improve upon the more general adaptation approaches.
One such approach is parallel model combination (PMC), in which
a noise model is used to update the model parameters using an ap-
proximation to the non-linear mixing function[4].

The approach we will follow in this work, is to try to recover
the clean features from the noisy features using some estimate of
the speech and noise characteristics. Typically the recovery is done
by filtering the speech features in the log-spectral domain so that

Part of this work was done while Dr. Myrvoll was a visiting researcher
at the ATR Spoken Language Translation Laboratory.

the average mean-square-error between the estimated features and
the true features is minimized. The reason that the log-spectral
domain is preferred to the spectral domain, is that the spectral fea-
tures are strictly positive. This positiveness complicates any sta-
tistical modeling of the speech, although use of the log-normal
distribution for power-spectrum modeling has been utilized[4].

There are several problems that complicates what in princi-
ple is a simple filtering approach. As the noise and speech are
non-linearly mixed in the log-spectral domain there are no closed
form solutions available as far as maximum likelihood estimation
of the noise parameters or MSE-estimation of the clean features
are concerned. This intractability has encouraged the use of vari-
ous approximations, often based on a linearizion of the non-linear
mixing function[5, 6]. The non-linearity also causes the distribu-
tion of the noisy features to be non-Gaussian, even under the ide-
alized assumption that both the speech and the noise has a normal
distribution.

In this work we assume that the noise can be modeled as a
multivariate normal distribution in the log-spectral domain. We
also restrict ourselves to the case of the noise being stationary. For
various treatments of feature denoising under non-stationarity see
[7, 8, 9].

In the previous work[1], we derived equations according to
the expectation-maximization (EM)[10] formulation to estimate
the noise parameters under the above assumptions, and ended up
with a set of integrals that had to be solved numerically. Solving
the integrals using standard numerical techniques turned out to be
non-trivial, and analytical solutions were presented for the parts of
the integration domain that proved to be ill-behaved. This still left
some mostly well-behaved parts of the integration domain to dealt
with using numerical integration, resulting in a very slow filtering
procedure.

In next section we briefly review our previous results before
we present a piecewise approximation scheme that enables closed
form solutions to the integrals. Experiments are conducted on the
Aurora 2 database and compared to the VTS approach that uses
Taylor series to approximate the non-linear function[5].

2. NOISE PARAMETER ESTIMATION

When speech is corrupted by additive noise in the time or spec-
tral domain, the effect in the log-spectral domain is a non-linear
mixing of the noise and the speech,

zt = xt + log
(
1 + ent−xt

)
, (1)
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where x is the speech data, n is the noise and z is the corrupted
speech, all in the log-spectral domain and all indexed by the time
t. We follow common practice and assume that the noise n is
Gaussian with unknown mean, µn, and variance, σn, while the
speech is modeled as a mixture distribution with known parame-
ters. One way to alleviate the effect of the noise is to find the mini-
mum mean-square-error estimate of the clean speech. The optimal
mean-square-error (MSE) estimator is given by

x̂ = EX|Z [x], (2)

where EX|Z is the conditional expectation operator. In order to
perform this filtering we need to estimate the unknown parameters
of the noise distribution.

We have previously shown that the noise parameter estimation
problem can be cast as a missing data problem, where the cor-
rupted speech {zt} is the incomplete data, and {zt, xt} are the
complete data. This motivates the use of the EM-algorithm [10] to
find the noise parameter estimates. We form the auxiliary function

Q(Λ′, Λi)

=EX|Z
[
log pX,Z

(
{xt, zt}T

t=1|Λ′
) ∣∣∣Λi, {zt}T

t=1

]

=

∫
log pX,Z

(
{xt, zt}T

t=1|Λ′
)

dPX|Z
(
{xt}T

t=1|{zt}T
t=1, Λi

)
,

(3)

where Λ = {µn, Σn} are the parameters of the noise model.
In [1] it is shown that the maximum of (3) with respect to the

noise parameters is obtained using,

µ̂n =
1

T

T∑
t=1

∫ zt

−∞
n(zt, xt)pX|Z(xt|zt, Λi)dxt (4)

σ̂2
n =

1

T

T∑
t=1

∫ zt

−∞
(n(zt, xt) − µ̂n)2 pX|Z(xt|zt, Λi)dxt, (5)

where

pX|Z(xt|zt, Λ) =
pZ|X(zt|xt, Λ)pX(xt)

pZ(zt|Λ)

=
∂n(zt, xt)

∂zt
pN (n(zt, xt)|Λ)

pX(xt)

pZ(zt|Λ)
.

(6)

and

n(zt, xt) = log
(
1 − ext−zt

)
+ zt, (7)

There is no known closed form of the probability density function
pZ(zt|Λ), but it can be calculated numerically using the integral

pZ(zt|Λ) =

∫ zt

−∞
pZ|X(zt|xt, Λ)pX(xt)dxt. (8)

The procedure now goes as follows: Given an initial noise
model estimate Λ0, calculate the new model estimates µ̂n and
σ̂n. Let Λ1 = {µ̂n, σ̂n}, and maximize the auxiliary function (3)
based on this new estimate. Repeat the procedure until conver-
gence is achieved.

3. APPROXIMATIONS

3.1. Previous Work

To estimate the new model estimates in each new EM iteration,
a series of numerical integrals corresponding to equations (4), (5)
and (8) has to be calculated. In [1] we showed that this was non-
trivial, as the integrands could be very ill-behaved around xt = zt,
and the fact that the integral was performed on a semi-infinite
domain. The solution to this problem was to split the integral
into three parts – an infinite tail, (−∞, xl

t], an ε-ball around zt,
(zt − ε, zt], and the rest, (xl

t, zt − ε]. If xl
t � zt and ε is suffi-

ciently small, good closed-form approximations can be found for
the infinite tail, as well as the ε-ball. The details can be found in
our previous paper.

The rest of the integral was considered smooth enough to solve
numerically. The problem with this approach is the computational
complexity of the numerical integration routines that we utilized.
We also noticed that some integrals still proved problematic, al-
though the impact on the final estimates seemed negligible.

3.2. Piecewise Approximations

We now want to replace the numerical integration with an approx-
imations scheme that is flexible with respect to complexity and
accuracy. In the derivations that follow we have stripped down the
complexity of the equations somewhat with respect to the actual
parameters used. This is done to keep the presentation readable
and simple to follow, as the full level of detail will only confuse
the issue. We will focus on the integral in equation (8), with exten-
sions to the mean and variance estimates presented later. Writing
out the complete expression we have,

pZ(zt|Λ)

=

∫ zt

−∞
pZ|X(zt|xt, Λ)pX(xt)dxt

=

∫ zt

−∞

∂n(zt, xt)

∂zt
pN (n(zt, xt)|Λ)pX(xt)dxt

=

∫ zt

−∞

1√
2πσ2

n

e
− 1

2

(
log(1−ext−zt)+zt−µn

σn

)2

1 − ext−zt
pX(xt)dxt

(9)

To make the expression more manageable we do the variable
substitution t = 1 − ext−zt , which in turn yields,

pZ(zt|Λ)

=

∫ 1

0

1√
2πσ2

n

e
− 1

2

(
log(t)+zt−µn

σn

)2

t

pX(log(1 − t) + zt)

1 − t
dt.

(10)

The expression can be simplified even further using the fact that
1
t

= e− log(t). This enables us to include the denominator t in the
exponential, which in turn can be written,

e
− 1

2

(
log(t)+zt−µn

σn

)2

t

=e
− 1

2

(
log(t)+zt−µn+σ2

n
σn

)2

e−µn+zt+
σ2
2 .

(11)

The same reasoning is used to include the term 1
1−t

in every mix-
ture component in pX(log(1 − t) + zt).
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The integral is still to our knowledge unsolvable, and in this
respect our manipulations haven’t gained us much. On the other
hand, for every mixture component of pX(log(1 − t) + zt), we
now have a product of two Gaussians. The key step now is to
do piecewise linear approximations of the two functions log t and
log(1 − t). Both functions are smooth over the majority of the
[0, 1] domain, with the exceptions of t = 0, 1, where log t and
log(1−t) goes to minus infinity. This is fortunately not a problem,
as the approximations referred to in section 3.1 gives good results
over small neighborhoods of these critical points.

0

-2

-1

-3

-4

t

0,80,60,40,2

Fig. 1. Piecewise linear approximations to the two functions, log t
and log(1 − t). Five non-uniform line segments are used for each
functions.

In figure 1 we show piecewise linear approximations to the
two functions log t and log(1 − t), using five non-uniform line
segments per function. The lengths of the line segments are powers
of 1/2, from 1/2 to 1/32, and the segments becomes shorter as the
functions goes towards minus infinity. We see that the logarithms
are well approximated using only a few line segments.

Using these approximations we can split the integral into eight
non-uniform parts indexed by i = 1..8, where log t and log(1− t)
are replaced by ait + bi and cit + di, respectively. In general
we can replace any Gaussian N (ax+b; µ, σ) by (1/a)N (x; (µ−
b)/a, σ/a), so now equation (10) is replaced by the product of two
Gaussian distributions. The product of two Gaussian distributions
N (x; µ, σ)N (x; φ, τ) is also a Gaussian distribution scaled by α,
with mean µ̃ and variance σ̃ equal to,

µ̃ =
τ2

σ2 + τ2
µ +

σ2

σ2 + τ2
φ, (12)

σ̃ =
στ√

σ2 + τ2
. (13)

and the scale α equal to

α =
1√

2π(σ2 + τ2)
e
− 1

2
(µ−φ)2

σ2+τ2 (14)

This means that we have approximated the highly non-linear inte-
gral by a sum of Gaussian integrals which has well-known solu-
tions in the form of error functions. The approximations presented
here can be used as-is for the mean and variance integrals as well.

Equations (4) and (5) both involves a multiplicative term contain-
ing n(zt, xt), which corresponds to log t + zt after the variable
substitution t = 1 − ext−zt . This means that the multiplicative
term will be a polynomial in t when we use the piecewise linear
approximation to log t. Closed form solutions to the integrals ex-
ists in these cases too, if somewhat more analytically involved.

Finally we need to consider the MMSE-filter itself, which has
the analytical form

x̂t =

∫ zt

−∞
xtpX|Z(xt|zt, Λ)dxt. (15)

The same variable substitution that we did earlier gives xt =
log(1 − t) + zt, which in turn can be exchanged by a piecewise
linear approximation. Again we have analytical solutions to the
integral available.

The key points of this section can be summed up as follows:
Through a change of variables the integrals in equations (4), (5)
and (8) can be written as simple products of Gaussian distribu-
tions and a polynomial term, all of which are functions of log t
and log(1 − t). Using piecewise linear approximations of log t
and log(1 − t), we can write the integrals as sums of approxima-
tive closed form solutions. In the next section we present a set of
experiments on the Aurora 2 database.

4. EXPERIMENTS

In this section we presents some results that were obtained on a
subset of the Aurora 2 database. The results are compared with
an implementation of the well-known Vector Taylor Series (VTS)
approach[5].

4.1. Experimental Setup

In the experiments that follow we used the Aurora 2 database,
which consists of spoken digit strings that has been processed to
add noise and channel variations. In this work we are only inter-
ested in the effect of noisy speech resulting from additive noise
only, and so we will only report results on a subset of test set A.

The clean data Hidden Markov Model used for recognition
was built with HTK using the standard scripts provided with the
Aurora 2 database. We used 12 cepstral coefficients, c1-c12, to-
gether with c0 as a replacement for energy. Together with the ∆-
and ∆2-features this makes for a 39-dimensional feature vector.

We used a Gaussian Mixture Model (GMM) with 64 compo-
nents as our clean speech model. The GMM was trained on the
same training data as the HMM, but with the silence parts ex-
cluded. Also, the model was trained on the 13 dimensional cep-
stral data, and the model was then transformed to the log-spectral
domain using an inverse cosine transformation.

The two logarithmic functions log t and log(1 − t) were ap-
proximated by piecewise linear functions on a non-uniform seg-
mentation of the [0, 1] domain. The linear approximation in each
segment was estimated in terms of first order Chebyshev polyno-
mials using the Maple software package[11]. The linear segments
are tabulated in table 1, although the full accuracy used in the ex-
periments has been trimmed to better fit the table format.

4.2. Results

The VTS approach and the optimal approach were both tested on
the speech corrupted with subway noise from Aurora 2 test set A.
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Domain log t log(1 − t)[
1
32

, 1
16

] −4.118 + 21.961t 0.02645 − 1.372t[
1
16

, 1
8

] −3.425 + 10.980t 0.02645 − 1.372t[
1
8
, 1

4

] −2.732 + 5.4903t 0.02645 − 1.372t[
1
4
, 1

2

] −2.039 + 2.7451t 0.02645 − 1.372t[
1
2
, 3

4

] −1.346 + 1.3725t .7058 − 2.745t[
3
4
, 7

8

] −1.346 + 1.3725t 2.757 − 5.490t[
7
8
, 15

16

] −1.346 + 1.3725t 7.555 − 10.98t[
15
16

, 31
32

] −1.346 + 1.3725t 17.84 − 21.96t

Table 1. Linear approximations of the logarithmic functions log t
and log(1 − t).

The data has seven different signal-to-noise ratios from clean to
-5 dB. The results for this noise condition is presented in table 2.
The original numerical integration approach is referred to as “NI”
in these experiments, and the new approximation is referred to as
“PLA”.

We see that the optimal filtering outperforms both the baseline,
and the improvement that VTS gives, for the most serious noise
conditions. The improvement of PLA over NI indicates that the
problem of numerical stability was graver than previously thought.
The speed was also significantly improved, sometimes by a factor
of three. For higher SNRs VTS outperforms our proposed method,
and one conjecture is that the VTS formulation more closely re-
sembles a standard adaptation approach due to the approximations
made, and in that case VTS is able to compensate for other vari-
ations than just the additive noise. The slight performance degra-
dation as compared with the baseline for clean speech and 20 dB
SNR can be explained by the approximation made around t = 0.
Using more line segments and thereby shrinking the area around
this extreme point is will improve the approximation and is likely
to improve the performance. Clearly further investigation into this
matter is needed.

Recording inside a subway

SNR Baseline VTS NI PLA
-5dB 10,72 11,61 18,30 20,08
0dB 20,94 29,44 35,40 43,78
5dB 45,26 59,75 68,28 72,34

10dB 73,87 84,34 86,92 88,49
15dB 92,08 95,30 93,83 94,14
20dB 96,90 97,05 96,44 96,53
∞dB 99,11 99,08 98,53 98,50

Average 62,70 68,08 71,10 73,41

Table 2. Recognition results for the filtered subway recordings.
The numbers reflect the number of correct words, or accuracy, of
the recognizer. Infinite dB refers to clean speech.

5. CONCLUSIONS

We have in this paper presented work done on optimal filtering of
cepstral coefficients using an approximation to the numerical in-
tegration techniques introduced earlier. We have shown that this
approach clearly outperforms both the original numerical integra-
tion method, as well as VTS, a method that relies on approximating
the filtering problem by linearizing the non-linear mixing function.

The performance that is achieved is promising, and we believe that
it warrants further investigation into the use of more accurate mod-
eling of the cepstral filtering problem. Further research into non-
stationary noise and online estimation techniques is a natural ex-
tension of this work.
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