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ABSTRACT
It is known that the perceived loudness of a tone signal by
human is spectrally masked by background noises. This
masking effect causes not only a shift of just-audible
sound pressure level of the tone, but also produces a 
masked loudness function having steeper slope than the
unmasked one. This masking property of perceived
loudness stimulates us to propose a new mel-scale-based
feature extraction method with non-uniform spectral
compression for speech recognition in noisy environments.
In this method, the speech power spectrum is to undergo 
mel-scaled band-pass filtering, as in standard MFCC
front-end. However, the energies of the outputs of the
filters are compressed by different root values defined by
a compression function. This compression function is a 
function of the SNR in each filter band. Using this new
scheme of SNR-dependent non-uniform spectral
compression (SNSC) for mel-scaled filter-bank-based
cepstral coefficients, substantial improvement is found for 
recognition in different noisy environments, as compared
to the standard MFCC and features derived with cubic
root spectral compression.

1. INTRODUCTION 
Nowadays, robust speech recognition in noisy
environments especially in low signal-to-noise ratio
(SNR) is still a challenging problem. In the presence of
noise, the accuracy and robustness of speech
representation deteriorates dramatically, which makes
serious spectral mismatch between the training and testing 
data. To alleviate this problem, many robust speech
recognition techniques have been developed by
researchers. These techniques can be generally classified
into three categories: inherently robust speech features [1],
speech enhancement [2] and model compensation [3]. 

This paper focuses on the robust speech feature
extraction approach. Spectral compression is a known,
effective technique to reduce the mismatch (or variation)
between training and testing patterns. In using spectral
compression, a constant root is generally used to compress
the speech power spectrum. The compressed spectrum is
expressed as:

10,)()(
~

kPkP (1) (

where )(
~

kP is the compressed speech power spectrum,

is the original speech power spectrum,)(kP  is the

compression root (that is a positive exponent not greater 
one) and k is the DFT point or the filter band index.
When is small, the mismatch or variation caused by 
noise is reduced but at the same time considerable amount
of information is lost. Thus the spectral compression
technique is a trade-off between information and pattern
mismatch.

In root cepstral analysis (RCA) [4], the optimal root
or the exponent of the power law for using LFCC (linear
frequency cepstral coefficients) or LPCC (linear 
predictive cepstral coefficients) as the speech features in
car noise environments was found to be around 1/3. In the
perceptually based linear prediction (PLP) analysis [1],
cubic root spectral compression is used to compress the
energies of the critical band filter outputs after pre-
emphasis.

As shown in our previous works [5] [6], using a
constant root irrespective of the frequency
characteristic of speech spectrum is a sub-optimal
approach since some frequency bands of the speech signal 
are more resistant to noise contamination while some
other bands are less. Thus using a constant compression
root would over-compress or under-compress some
frequency components.

From the viewpoint of psychoacoustics, spectral
compression is a process that converts sound intensity into
loudness; the well-known power law of perceived
loudness [7] has the equation form same as that of (1). 
The exponent of power law is 0.3 for the stimulus of 1
kHz tone and 0.23 for the stimulus of broadband uniform
exciting noise. This psychoacoustic property of perceived
loudness also justifies the statement that the use of a 
constant root for all frequencies is sub-optimal. Thus the
compression process can be better formulated as: 
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where the compression root is dependent on the frequency
band. Based on the knowledge of psychoacoustics, a
compression function as described in (3) is proposed in [6]
for white noise. 
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where  and 0A A are used to constrain the dynamic range

of compression root. Filter-bank-based method with the
use of this compression function yields a considerable
recognition performance gain over its standard counterpart
in white noise condition.

In [8], it is shown by experiments that the
background noise can produce masking effect on the
perceived loudness. The noise not only produces a shift on
the just-audible loudness level, but also makes the masked
loudness function have steeper slope than the unmasked
loudness function for low sound pressure level. However,
the masked and unmasked loudness functions have very
close values for large sound pressure level. This property
suggests that the conversion of sound intensity level to
loudness should also depend on the signal-to-background-
noise ratio. The compression root would decrease when
the SNR is small and would also change according to the
frequency characteristic of each frequency band as 
reported in [5-6] for large SNR. In this paper, we propose
a mel-scaled-based feature extraction method using SNR-
dependent non-uniform spectral compression. We use the
mel-scaled speech spectrum and noise spectrum to find
the SNRs of frequency bands for each windowed speech
frame. The compression root of each frequency band
output is obtained from a compression function of SNR.
We multiply the compression root with the log of band
energy and calculate the cepstral coefficients by doing 
inverse discrete cosine transform. We call our method as
SNR-dependent non-uniform spectral compression
(SNSC).

2. SNR-DEPENDENT NON-UNIFORM SPECTRAL 
COMPRESSION (SNSC) 

The procedure of SNSC is depicted in figure 1. Same as 
standard MFCC front-end, the speech power spectrum is
to undergo mel-scale band-pass filtering, resulting in bins
of energy: 
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where is the output energy of the k-th filter band,

{ } are the weights for the i-th DFT point for the k-th

filter and { } is the speech power spectrum. Using the

background noise, the average power spectrum of noise is
calculated, followed by mel-scale band-pass filtering to
yield bins of energy { }. Then the SNR of each

frequency band is estimated as:
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The square root in (5) is for the purpose of reducing the
dynamic range of the energy ratio.

In equations (4) and (5), E represents the energy

of the k-th filter band of a clean speech signal. In the

recognition phase, { } need to be estimated from the

noisy speech. In our algorithm, E is estimated from

subtracting the noise energy from the noisy speech energy
as shown in (6):
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~
where )(kE is the energy of the k-th filter band of the

noisy speech. 
Windowed speech signal 

Fast Fourier transform

Spectral magnitude squared

Mel-scale band-pass filtering 

SNR estimation for each band 

Calculation of compression root

Band energy compression

Log followed by inverse DCT

Static speech features

The estimated snr is then mapped to a

compression function

)(k

) . Based on the experimental

findings of psychoacoustics, we define a new compression
function as follows:

Figure 1.   Feature extraction with SNSC 
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where  and 0A A are used to constrain the dynamic range

of compression root, is the cutoff that functions as the

just-audible threshold, k is the gain to control the

steepness of the compression function, and u[.] is a unit
step function.

Equation (7) can be explained with the knowledge of
psychoacoustics as discussed in the previous section.
When snr(k) is less than the cutoff (just-audible threshold)

k , the compression is set equal to the minimum value A0.

The value of the cutoff is varied according to the SNR. 
The smaller the SNR, the larger is the cutoff, and vice
versa. When snr(k) is above the cutoff, the compression
function increases with a slope according to the SNR; the 
smaller the SNR, the steeper the slope. For large snr(k),
the compression function in equation (7) is simplified to
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the compression function defined in equation (3). Unlike
the compression function in equation (3) that works well
for additive white noise, the new compression function
can be applied to arbitrary noise model.

In the compression function, the parameters A and
are varied according to the frame energy. The

parameters A and  are computed as follows
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where is the energy of the m-th frame,m  and  are

the mean and standard deviation of frame energy 
calculated from all the frames of an utterance. 

In our scheme, we use the frame energy to measure
the broadband characteristic of the sound segment. The
larger the frame energy, the larger the value of A to give
small compression and at the same time the smaller is the
value of , and vice versa. This implies that a small
compression is assigned to a speech frame of large energy
and a large compression for a weak energy frame. We do
it so because a speech frame of weak energy is less 
tolerant to noise and is likely to be broadband unvoiced
frame that should receive larger compression according to
the psychoacoustic principle.

The parameters k  and k in the compression

function are computed according to  as follows)(ksnr

1
(10)
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where snr  and snr are the mean and standard deviation

of calculated from all the frequency bands of the

speech frame.

)(ksnr

1  and 2 are respectively the lower and

upper bounds of k  while 1  and 2 are the lower and

upper bounds of k . These equations set k  and k  near

to the upper bounds 2  and 2 , respectively, when

 decreases, which in turn makes)(ksnr )(k  small.

After obtaining the compression function )(k , the

energy  is then compressed as: )(kE
)()()(ˆ kkEkE (12)

Logarithm is then applied to E , followed by inverse

discrete cosine transform to obtain speech features. It is

noted that the logarithm of is simply the product of

)(ˆ k

)(kÊ

)(k  and the logarithm of .)k(E

To sum up, in the whole procedure, we want to
reduce variations in the feature caused by noise.
Frequency bands of low SNR should make less

contribution to the resulting speech features while the
information contained in the high SNR bands are
preferred to be largely emphasized.

3. EXPERIMENT
In our recognition experiment, the recognizer is based on
HMM architecture with 6 states and 4 Gaussian output
densities. The feature vector has three streams: the first
stream contains 12 cepstral coefficients with log energy of 
the frame, the second and the third stream contains 
respectively the first order and second derivatives. The
speech database used is TIDigit, which contains 20 
isolated words including digits “0” to “9” plus 10 extra
commands like “help” and “repeat”. The database
contains utterances spoken by 16 speakers (8 males and 8 
females). We select 2 and 16 utterances for training and 
testing respectively from each speaker for each word. The
analysis frame is 32ms long windowed by Hamming
weights. The frame rate is 9.6ms.

Three types of noise from NOISEX-92 database are
considered for testing, including white, babble and volvo
noises. The average noise power spectrum is calculated
using 200 non-overlapping frames of noise data and is
scaled according to a specified global SNR. The global
SNR for an utterance is defined as: 
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where is the clean speech power spectrum of frame

m,

)(kPm

)k(N is the non-scaled average noise power spectrum,

M is the number of frames of the utterance, N is the FFT 
size and g is the scaling factor to scale the ratio to meet a

specified . The noise is added to the clean speech

sequence in the following way: 
globalSNR

)()()(~ ingisis  (14) 

where )(~ is is the noisy speech sample, s  is the clean

speech sample and  is the non-scaled noise sample.

)(i

)(in

In training mode, we use the average noise spectrum 
for a specified SNR and clean training data to calculate
the SNR of each frequency band for all frames and in turn
calculate the compression root. The compression roots are
applied to the clean speech data to train up the
corresponding word model.

In testing mode, based on the average noise
spectrum and the spectrum of the noisy speech, we use the
noise subtraction method [2] to obtain an estimate of the
clean speech spectrum and calculate the instantaneous
SNR of each frequency band as given by (5) and (6).

Table 1, 2 and 3 shows the recognition accuracy (%)
respectively for white, babble and volvo noise
environments. The parameters used in all these
experiments for the SNSC features are shown in Table 4.
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The recognition results of using standard MFCC front-end 
and modified MFCC with cubic root compression are also 
included in the tables for comparisons. For the white noise 
case, the improvement of SNSC over the other two 
methods is substantial in low SNR, say in 0dB, where the 
absolute accuracy increases from 18.9% for using MFCC 
or 26.2%  for using MFCC + 0.33 fixed root to 67.7%. 
Even in the nearly clean environment (100dB), SNSC do 
have performance gain compared to standard MFCC. This 
indicates that our compression scheme can also reduce 
variations among speakers or utterances from the same 
word class.

For the babble noise case as shown in Table 2, the 
trend is similar to that of white noise with accuracy 
increases from 20.9% (MFCC + 0.33 fixed root) to close 
to 70%. Also the SNSC front-end in this babble noise 
experiment consistently perform better than the two other 
front-ends across all SNRs. For the volvo noise 
environment, SNSC still perform favorably against the 
two other methods. For example, in the 0dB case, SNSC 
obtains an accuracy of 97.5%, compared to 96.8% and 
96.4% of the two other approaches. 

These recognition experimental results show that the 
SNSC front-end can deal with different types of additive 
noise. This is attributed to the dependency of the 
compression function on the SNRs of filter bands. 
Different types of noise would contaminate different 
bands of the speech signal. Our scheme is able to adjust 
the compression function to retain nosie-resistant 
components and de-emphasize the weak components.  

4. CONCLUSION 
A robust feature extraction method using SNR-dependent 
non-uniform spectral compression is presented. This 
method is basically motivated by the human’s perceived 
loudness. A spectral compression function is developed 
based on the loudness function and spectrally masked 
loudness of human. This compression function makes the 
resulting feature able to emphasize the frequency 
components of high SNR and de-emphasize the frequency 
components of low SNR. Experimental results show that 
the MFCC front-end incorporated with this new 
compression function can cope with different noise 
models with recognition accuracy substantially improved 
especially in low SNR in comparison with other 
compression techniques. 
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Front-end 100dB 30dB 10dB 5dB 0dB
SNSC features 99.20 98.27 91.72 83.45 67.67
Standard MFCC 99.16 98.82 76.72 51.43 18.88
MFCC + 0.33 
fixed root 

98.96 98.71 75.85 53.89 26.23

Table 1. Recognition result (%) for white noise 

Front-end 100dB 30dB 10dB 5dB 0dB
SNSC features 99.20 99.18 95.13 86.98 69.19
Standard MFCC 99.16 99.02 88.43 55.3 20.75
MFCC + 0.33 
fixed root 

98.96 99.00 90.10 58.75 20.91

Table 2. Recognition result (%) for babble noise 

Front-end 100dB 30dB 10dB 5dB 0dB
SNSC features 99.20 99.14 98.96 98.57 97.50
Standard MFCC 99.16 99.12 98.84 98.53 96.82
MFCC + 0.33 
fixed root 

98.96 99.10 99.06 98.74 96.42

Table 3. Recognition result (%) for volvo noise 

1 2 1 2 l u A0

1 8 1 1.5 0.0002 0.0003 0.3 
Table 4. Parameters of the compression function 

used for recognition experiments 
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