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ABSTRACT

Acoutic models trained with clean speech signals suffer in the
presence of background noise. In some situations, only a limited
amount of noisy data of the new environment is available based
on which the clean models could be adapted. A feature compen-
sation approach employing polynomial regression of the signal-to-
noise ratio (SNR) is proposed in this paper. While clean acoustic
models remain unchanged, a bias which is a polynomial function
of utterance SNR is estimated and removed from the noisy fea-
ture. Depending on the amount of noisy data available, the algo-
rithm could be flexibly carried out at different levels of granular-
ity. Based on the Euclidean distance, the similarity between the
residual distribution and the clean models are estimated and used
as the confidence factor in a back-end Weighted Viterbi Decoding
(WVD) algorithm. With limited amounts of noisy data, the fea-
ture compensation algorithm outperforms Maximum Likelihood
Linear Regression (MLLR) for the Aurora2 database. Weighted
Viterbi decoding further improves recognition accuracy.

1. INTRODUCTION

Speech recognition systems trained in quiet suffer from perfor-
mance degradation in the presence of ambient noise. This is mainly
due to the mismatch between the clean acoustic models and noisy
features. Generally, there are two ways to reduce the mismatch
to achieve satisfactory performance. One apporach is to denoise
front-end feature vectors while keeping the clean models unchanged
[1][2] or develop noise robust features [3] [4]. The other approach
involves adapting the back-end acoustic models according to the
noisy environments [5] [6] [7].

In [8], a set of variable parameter HMMs whose Gaussian
mean vectors are polynomial functions of the environments is used
to deal with noisy speech. In this paper, polynomial regression of
the utterance SNR is applied to compensate noisy features by re-
moving the bias with respect to the clean features while the clean
models remain unchanged. When dealing with limited environ-
ment adaptation data, one advantage of polynomial regression is
that by learning the trend of the bias as a function of SNR, the
algorithm can predict the bias at unseen SNRs. After feature com-
pensation, the residual distribution of the compensation is esti-
mated. The similarity between the residual distribution and clean
Gaussian distribution is measured by the Euclidean distance be-
tween the mean vectors which is used as the confidence factor in a
weighted Viterbi decoding algorithm.

The remainder of this paper is organized as follows. In Sec-
tions 2 and 3, formulations of feature compensation based on SNR

polynomial regression and weighted Viterbi decoding are provided,
respectively. Experimental results are shown in Section 4, and Sec-
tion 5 concludes the paper with a summary.

2. FEATURE COMPENSATION

2.1. Bias removal by polynomial regression

Under the assumption that the power of a noisy speech signal in
each frame is the sum of clean speech and noise, we have:

(1)

where , and denote noisy speech, clean speech and noise,
respectively. In the log-power domain, Eq.1 could be rewritten as:

(2)

where and represent noisy and clean speech in the log-
power domain and is the signal-to-noise ratio. A similar rela-
tionship is true in the cepstral domain:

(3)

where and are noisy and clean speech in the cepstral do-
main, respectively.

From Eq.2 and 3, it is clear that the bias between the clean and
noisy features is a nonlinear function of . In this paper, this
nonlinear function is modeled by a polynomial of order , that is:

(4)

Assuming that the acoustic models are Gaussian mixture HMMs,
the probability density of observing feature from state is com-
puted as:

(5)

where is the th multivariate Gaus-
sian mixture in state with weight , and are the mean
vector and covariance matrix associated with it, respectively.

The feature compensation algorithm removes the estimate of
the bias from the noisy feature by computing the polynomial with
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respect to SNR during the mixture Gaussian probability calcula-
tion based on clean HMMs and noisy data, which is shown in Eq.6:

(6)

where is the SNR for the frame at time t. ’s are the co-
efficients of the regression polynomial of state , mixture and
polynomial order . Depending on the adaptation data available,
these coefficients could be tied at different levels - mixture, state,
phonetic class or one for all phonemes. Note that is a vec-
tor which has the same dimension as the feature vector. In other
words, each element in the feature vector has its own regression
polynomial.

2.2. Polynomial estimation

The regression polynomial of SNR is estimated based on the EM
algorithm under maximum likelihood criterion [9]. Define the EM
auxiliary function we are interested in as:

log (7)

where is the utterance number and is the frame number of the
th utterance. and are

the state and mixture sets, respectively.
is the probability of staying at state mixture at time t

given the th observation sequence.
Without loss of generality, we assume each Gaussian mixture

has one set of distinct regression polynomials. For other tying
strategies, the derivations follow accordingly.

Optimizing with respect to , we obtain:

(8)

log

(9)

By regrouping items, Eq.9 can be rewritten as:

(10)

In a similar way as [8], define:

(11)

Therefore, Eq.10 could be expressed as:

(12)

can be obtained by solving the equations in Eq.12. If
the covariance matrix in is diagonal (which is usually the
case), the computational load could be significantly reduced [10].

2.3. Utterance SNR estimation

The SNRs employed in the feature compensation algorithm are
signal-to-noise ratio of the whole utterance. They are computed by
averaging over all speech frame SNRs in the utterance where the
frame SNRs are estimated based on the minima statistics tracking
algorithm [11].

3. WEIGHTED VITERBI DECODING

3.1. Estimation of residual distribution

Let denote the estimate of the clean speech feature after
the bias removal from the noisy speech feature :

(13)

Since is the approximation of the clean signal, the distribution
of it can convey useful information of the bias removal. Consider
the residual of bias removal as a random variable assuming
Gaussian distribution:

(14)

the maximum likelihood estimation of the residual Gaussian dis-
tribution of state and mixture could be readily obtained by the
EM algorithm as:

(15)

(16)

where .

3.2. Weighted Viterbi decoding

To measure the similarity of residual distributions after the feature
compensation and the distributions in the clean model, averaged
Euclidean distance is applied:

(17)

where and are two probability distributions and is the di-
mension of the vector.

The Euclidean distance between the residual distribution and
the clean model distribution describes in an expectation sense the
effectiveness of bias removal in the feature compensation algo-
rithm. The smaller the distances, the more accurate the feature
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compensation algorithm is. Therefore, in the Viterbi decoding net-
work, the Euclidean distance is used as a confidence factor.

Weighted Viterbi Decoding (WVD) modifies the recursive step
of the Viterbi algorithm by weighting the probability of observing
features given the HMM state , , with the confidence
factor of current state after feature compensation. The confidence
factor can be inserted into the Viterbi algorithm by raising the
probability to the power to obtain the following state
update equation [12]:

(18)

where represents the maximum likelihood of observing speech
features to and being in state at time , stands for the
transition probability from state state and is a state
dependent confidence factor that maps the Euclidean distances of
the state into the interval .

Let denote the Euclidean distance associated with state
and the Euclidean distance of mixture within state . is
defined as:

(19)

which is the weighted summation of the Euclidean distances of the
mixtures in state .

The mapping function from the state Euclidean distance
into the state confidence factor is shown in Fig.1 where the

and are experimentally determined.

for
for

(20)
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Fig. 1. Mapping curve from state Euclidean distance to confidence
factor .

4. EXPERIMENTAL RESULTS

The algorithms of feature compensation and WVD proposed in
this paper are trained and tested using connected digits in Sets A
and B of the Aurora 2 database. There are eight types of back-
ground noise in this database, which are subway, babble, car and
exhibition noise in Set A and restaurant, street, airport and sta-
tion noise in Set B. Noisy speech data are generated by artificially
adding the noise signals at a variety of SNR levels. Word-based

HMMs are employed in the acoustic modeling with 16 emission
states for each digit, 3 states for the silence model and 1 state for
the short pause model. There are 3 mixtures in each state of digit
models and 6 mixtures for silence and short pause models. Models
are trained with clean speech data. Adaptation data sizes are cho-
sen as 10, 50 and 200 utterances with SNR levels at clean, 20 dB,
15 dB, 10dB, 5 dB and 0 dB. The utterance SNRs are re-estimated
based on the approach mentioned in Section 2.3.

The polynomials are different for different components of the
feature vectors. For example, Fig. 2 shows the estimated SNR
regression polynomials of the energy component( ) and di-
mension of feature vectors for the four types of noise in Set A.
The curves show that less compensation is needed when the SNR
is high.
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Fig. 2. SNR Regression polynomials of (top) and (bottom)
components of 4 types of background noise in Set A of the Aurora
2 database.

Comparative experiments are conducted between the popu-
lar adaptation algorithm MLLR and SNR polynomial regression-
based feature compensation algorithm (referred to as FC) proposed
in this paper under 10, 50 and 200 utterances adaptation condi-
tions. In the 10 and 50 utterances cases, polynomials are shared
for all word models. In the 200 utterances case, polynomials are
shared within states. MLLR adaptation uses a regression class
tree which is created by clustering Gaussian mixture means into 8
classes based on the Euclidean distance. Depending on the amount
of adaptation data, the granularity of adaptation is dynamically
chosen according to the statistics accumulated in the nodes. The
transformation matrices assume three-block diagonal form with
blocks accounting for the static, first and second order derivatives
of the features. For the mapping function in WVD, is set
to 0.6 and to 0.05. The performances are summarized in Tables
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1 and 2.
Compared with the baseline, MLLR gives improvements in

most cases. But for higher SNR conditions (e.g. clean and 20
dB ), MLLR’s performance is not satisfactory. FC obtains com-
parable accuracy to the baseline in the clean condition and signifi-
cant improvements under all the other conditions. FC consistently
overperforms MLLR under all SNR levels with all adaptation data
sizes. The best FC performance over MLLR is achieved when
only 10 utterances are used for environment adaptation since the
regression polynomial can make a good prediction of unseen SNR
levels. Note that as the number of adaptation utterances increases
beyond 200, our recognition results approach those of the matched
(multi-condition) case. In that case, the polynomials are mixture
specific.

10 Utt. 50 Utt. 200 Utt.
baseline mllr fc mllr fc mllr fc

Clean 99.0 94.2 98.8 94.6 99.0 97.1 99.0
20 dB 95.4 90.8 96.0 92.9 96.7 93.9 96.9
15 dB 87.3 84.1 92.1 88.1 93.0 88.4 93.4
10 dB 67.7 69.9 79.5 76.3 80.3 76.3 81.7
5 dB 39.5 48.9 58.0 58.7 61.2 57.8 65.8
0 dB 17.0 23.2 31.1 30.7 33.4 29.9 35.4

Table 1. Performance of baseline, MLLR and FC of Set A of the
Aurora 2 database. WVD was not used.

10 Utt. 50 Utt. 200 Utt.
baseline mllr fc mllr fc mllr fc

Clean 99.0 96.3 99.0 96.2 99.0 97.2 99.0
20 dB 92.8 94.0 96.2 95.0 97.4 95.2 97.4
15 dB 81.3 90.0 93.4 92.1 94.0 90.2 94.0
10 dB 59.0 79.9 80.5 83.7 81.6 79.6 86.0
5 dB 31.9 59.6 59.7 55.4 58.8 57.7 68.3
0 dB 13.7 29.8 31.4 32.2 31.5 33.0 38.5

Table 2. Performance of baseline, MLLR and FC of Set B of the
Aurora 2 database. WVD was not used.

Table. 3 shows the recognition accuracy of the combination of
FC and WVD algorithms on Sets A and B with different adaptation
data sizes. Further performance improvement is observed.

10 Utt. 50 Utt. 200 Utt.
set A set B set A set B set A set B

Clean 98.9 99.0 99.0 99.0 99.0 99.0
20 dB 96.1 96.7 97.1 97.5 96.9 97.5
15 dB 93.0 94.0 94.1 94.3 94.6 94.6
10 dB 81.3 81.5 82.6 82.6 83.5 87.6
5 dB 62.2 62.4 65.1 64.0 69.2 70.0
0 dB 34.7 35.9 37.3 36.1 39.4 41.5

Table 3. Performance of combination of FC and WVD on Sets A
and B of the Aurora 2 database.

5. SUMMARY AND CONCLUSIONS

In this paper, a polynomial regression-based feature compensa-
tion algorithm is proposed to reduce the mismatch between clean

trained acoustic models and noisy speech features. The polynomi-
als are a function of SNR and noise type. Weighted Viterbi decod-
ing strategy is applied based on the Euclidean distance between
the residual distribution of the feature compensation and the clean
models. On average, the feature compensation algorithms obtains
35% word error reduction compared with the baseline and 15%
over MLLR algorithm. The combination of feature compensation
and weighted Viterbi Decoding algorithms can achieve further im-
provements of about 7%.
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