
ABSTRACT

This paper investigates the use of higher-order autoregressive

vector predictors for tracking the noise in noisy speech signals.

The autoregressive predictors form the state equation of a linear

dynamical system that models the spectral dynamics of the noise

process. Experiments show that the use of such models to track

noise can lead to large gains in recognition performance on

speech compensated for the estimated noise. However, predictors

of order greater than 1 are not observed to improve the perfor-

mance beyond that obtained with a first-order predictor. We ana-

lyze and explain why this is so.

1. INTRODUCTION

Most typical noises that corrupt speech signals, such as the ambi-

ent noises encountered on a busy street, in a bar or in a subway,

have a large component that is relatively slow-varying. This is

illustrated by Figure 1, which shows the spectrograms for short

recordings of two common types of noises. We observe two dif-

ferent trends in these spectrograms: a relatively slowly-varying

background, superposed with sudden onsets of events. Given the

average trends in these noises, it is reasonable to assume that the

noises encountered at any instant of time are a good indicator of

what may follow. Hence, one may attempt to predict the future

behavior of such noises based on their current and past behavior. 

The predictability can be codified by representing the noise as

the output of an auto-regressive (AR) process. We note at that

outset that our assertions on the predictability of the noise signals

relate to the variations of their spectral characteristics and not

that of the underlying time-domain noise signal. Also, we choose

to ignore phase characteristics of the noise, concentrating prima-

rily on the predictability of the magnitude of spectral magnitudes

of the noise. The corresponding statistical model, therefore,

models the sequence of power-spectral vectors derived from a

short-time Fourier transform analysis of the noise signal as a

function of the output of an AR process.

In this paper we investigate the use of such a model, for the pur-

pose of compensating for the effects of non-stationary noise on a

speech recognition system. We model the sequence of log-spec-

tral vectors of the noise as the output of an AR process. The

observed signal is the noisy speech signal - where the speech is

the non-linear obscuring influence that prevents us from observ-

ing the noise. The combination of the AR equation representing

the noise process, and the non-linear equation that relates the

noise to the observed noisy speech, form the state and observa-

tion equations of a traditional linear dynamical system. 

In an earlier paper [1] we presented a simple particle-filtering-

based algorithm to estimate the noise spectrum from the

observed noisy speech based on such a dynamical system model,

where the noise was modeled by a first-order AR process. In this

paper we further investigate the applicability and extensibility of

the model, including the rationale behind the choice of the fea-

ture representation for the noise model, the actual applicability of

the AR model to the noises in consideration, and the effect of

increasing the AR order on the estimation of the noise spectrum.

We note that several aspects of the presented analysis have been

discussed earlier by other researchers, in various contexts. The

use of dynamical systems to represent noise, in the context of

speech recognition dates back to the seminal work of Varga and

Moore [2], who represent the noise as the output of a hidden

Markov model (HMM). In their work, the HMM-based represen-

tation of the dynamics of the process underlying the noise was

utilized to improve the performance of a speech recognition sys-

tem on noisy speech, without explicit compensation of the noisy

speech for the noise. Kim et. al. [3] have proposed the use of a

linear dynamical system to track noise, for explicit compensation

of the spectral vectors derived from noisy speech. They use a

simplified extended Kalman filter (EKF) formulation for esti-

mating the noise. To render the algorithm stable, they resort to

reducing the Kalman gain in a manner that is not mathematically

justified. The algorithm itself only permits the use of a simple

first-order AR process for the noise. The explicit use of higher-

order AR processes to model the noise has not been reported in

the speech literature so far, to the best of our knowledge.

The rest of this paper is arranged as follows: In Section 2 we dis-

cuss the AR model used to capture the noise dynamics. In

Section 3 we describe the dynamical system model used to esti-

mate the noise. In Section 4 we describe the particle-filtering

algorithm used to estimate the noise. In Section 5 we describe

our experiments, and in Section 6 we discuss our findings.

2. AR MODEL FOR NOISE SPECTRA

The Mth order AR model attempts to predict the tth spectral vec-

tor for the noise, , as a linear combination of the previous M

vectors. Notationally, this can be represented as

(1)
Figure 1: Wide-band spectrogram for a) traffic noise, b) babble
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where  is the predicted value for ,  is the order of the AR

predictor, and the s are the prediction coefficient matrices. The

AR model might be defined either for the power-spectral vectors

or the log-spectral vectors of the noise, i.e.  might either repre-

sent a power-spectral vector or a log-spectral vector. The predic-

tion coefficient matrices are estimated by minimizing

, the expected value of the squared norm of the error

between the true and predicted value of . For notational sim-

plicity, we define the matrix . Further we

define the extended column vector ,

obtained by vertical concatenation of the vectors

. The AR equation can be rewritten in terms

of these terms as . Minimization of the expected pre-

diction error norm results in the following estimate for :

(2)

 and  are estimated from a segment of train-

ing examples of the noise. 

We model the dynamics of log-spectral vectors with the AR

model, rather than that of power spectra, since empirical observa-

tions show that log-spectral vectors are much better suited for AR

models. The average per-component prediction error for log-spec-

tral vectors is much lower than the log of the average per-compo-

nent prediction error for power spectral vectors. 

Increasing the prediction order  usually decreases (and never

increases) the average prediction error norm on the training data.

Figure 2a shows the average prediction error on the training data,

as a function of AR order, for four different noise types. The AR

predictors for each of the noises were trained from 60 second long

training recordings, which were segmented into 25ms wide non-

overlapping frames. Each frame was parameterized into a 32-

component Mel-frequency log-spectral vector. AR predictors

were estimated both for the sequences of Mel power spectra, and

those of the Mel-log-spectra derived from the analysis. Figure 2b

shows the prediction error obtained on 30-minute long noise seg-

ments not used for training the predictors. The predicted error is

seen to decrease monotonically with increasing prediction order,

in all cases. The estimated predictors generalize well to data out-

side of the training data, indicating that the AR model is indeed

able to capture general characteristics of the noise, and not merely

the trends within the training data.

3. DYNAMICAL SYSTEM FOR NOISE

A dynamical system can be described by two equations: a state

equation that specifies the state dynamics of the system, and an

observation equation that relates the underlying state of the sys-

tem to the measurements of the output of the system. For systems

with Markovian dynamics, the state equation can be written as

(3)

where , the state at any time , is a function of the state at time

 and a driving term . The state is thus a continuous-valued

variable. The output of the system at any time is usually assumed

to be dependent only on the state of the system at that time. The

observation equation can be represented as

(4)

where  is the observation at time  and  represents any noise

affecting the system at time .

We designate the Mth order AR predictor for the log-spectral vec-

tors of the noise as the basis of our state equation. In order to

facilitate the employment of estimation procedures designed for

first-order Markov processes, we restate the Mth order predictor of

Equation (1) as a first-order regression, in terms of , where, as

before, .  is thus the state of the

system. We define the matrix  as 

(5)

where  is an  identity matrix, where  is

the dimensionality of the noise log-spectral vector , and

, as before. Equation (3) can be written as

(6)

Traditionally, the  terms are assumed to be samples from a 0

mean Gaussian random process. However, in Equation (6) the

lower  components of the state vector at time t, , are

identically equal to the first  components of . As a

result, the prediction error for the last  components of

, i.e. the last  components of , is always equal to 0,

and only the subvector formed from the first  components of 

is assumed to have a Gaussian distribution, whose covariance 

is learned from training data. The mean of  is assumed to be 0.

The observation equation for the dynamical system is the relation-

ship between , the noisy speech log-spectral vectors, , the

state of the dynamical system, and , the hypothetical log-spec-

tral vector for clean speech that would have been observed had it

not been corrupted by the noise. This relation is given by the fol-

lowing equation [4]:

(7)

where , where  is a D-dimensional identity vector.

Equations (6) and (7) thus represent the final state and observa-

tion equations respectively.

4. PARTICLE FILTERING ALGORITHM 

TO ESTIMATE NOISE

The problem we address next is that of determining the state of

the system, namely the noise , given only the sequence of
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Figure 2: Average per-component prediction error, as a function of AR
order (a) on training data, (b) on test data. The right panel also shows the
error obtained with a 0th order AR predictor.
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observations , the parameters of the state equation, , and ,

and the distribution of . We model the distribution of  by a

mixture Gaussian density of the form

(8)

where ,  and  represent the mixture weight, mean and

variance respectively of the  Gaussian, and  rep-

resents a Gaussian with mean  and variance .

Defining the prediction and update equations: For ease of pre-

sentation we introduce the following notation: we represent the

sequence of observations  as . The a posteriori

probability distribution of the state of the system at time , given

the sequence of observations  can be obtained through the

following recursion:

(9)

(10)

where  is a normalizing constant. Equation (9), also referred to

as the update equation requires the computation of .

Since , the clean speech vector at any time  may have been

generated by any of the  Gaussians in the Gaussian mixture dis-

tribution in Equation (8) with probability , we get

(11)

where  is the probability of , conditioned on , and

given that the clean speech vector  was generated by the 

Gaussian in the mixture. From Equation (7), we can derive the

following value for :

(12)

Equations (9), (11) and (12) together define the update equation.

Equation (12) cannot be used directly in the Kalman recursion

Equations (9) and (10), as it results in non-closed-form solutions.

Both Kim et. al. [3], and our earlier paper [1] approximate Equa-

tion (7) with a linear equation derived from a Taylor series expan-

sion, in order to reduce  to a more tractable Gaussian

density. However, the particle-filtering based algorithm presented

here does not require this approximation. 

Equation (10), the prediction equation, requires the computation

of , which is given by

(13)

where  is the covariance matrix for ,  refers to the vector

obtained from the first  components of ,  refers to the vec-

tor of the last  components of , and  refers to

the vector of the first  components of . Since

 is Gaussian for the first  components of , and

effectively a Dirac delta for the other components, direct compu-

tation of Equation (10) results in a peculiar solution where the dis-

tribution of the last  dimensions of  as given by

 is identical to that of the first  compo-

nents of , as given by . This, however, is

not a complication for the particle-filtering algorithm we use.

The particle filtering algorithm: The particle filter algorithm is

a sampling based algorithm that discretizes the predicted noise

distribution at any instant by redefining it as a uniform distribu-

tion over a discrete set of samples drawn from the original pre-

dicted distribution [5]. Procedurally, at each time instant , a set

of  samples are drawn from the predicted continuous density

. The predicted density is then approximated by a

uniform discrete distribution over these generated samples as:

(14)

where  is the  noise sample generated from the continuous

density , and  is the total number of samples gen-

erated from it. Thereafter, the update equation simply becomes

(15)

where  is a normalizing constant that ensures that the total

probability sums to 1.0.  is computed using Equation

(11). The prediction equation for time  now becomes:

(16)

This is a mixture of  distributions of the form ,

where  is computed using Equation (13). This is once

again sampled to approximate it as in Equation (14). 

To initialize the recursion with , we draw samples

from , the a priori distribution of , and duplicating each

sample  times to create an  dimensional sample as follows:

(17)

where  is the kth sample drawn from , and  refers to the

transposition operation.

Compensating for the noise: For each frame of incoming noisy

speech, the algorithm described above estimates a discrete a pos-

teriori distribution of the form:

(18)

For any estimate of the noise, , we can estimate , the log

spectrum of the clean speech, from  the log spectrum of the

observed noisy speech, using the approximated minimum mean

squared estimation (MMSE) procedure developed in [4] as:
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(19)

where  is given by

(20)

Combining Equations (18) and (19) gives the estimate for  as

(21)

5. EXPERIMENTS

We investigated the effectiveness of the AR noise model by test-

ing recognition performance on noise-corrupted speech compen-

sated by the algorithm described in Section 4. The database used

was a Spanish telephone speech database provided by Telefonicá

Investigación y Desarrollo (TID). The CMU Sphinx-3 speech rec-

ognition system was used in the experiments. Continuous density

8 Gaussian/state HMMs with 500 tied states were trained from

3500 utterances of clean telephone recordings. The test data con-

sisted of telephone recordings corrupted to various SNRs by traf-

fic noise, music, babble, and noise recordings from a subway. 

AR models of various orders were estimated from 30-second

training recordings of each of the noises. The predicted state

(noise) distributions were discretized by drawing 25 samples from

them. Clean speech log spectra were estimated from the log spec-

tra of the noisy speech using the MMSE procedure in Section 4.

Cepstra derived from the estimated clean speech log spectra were

used for recognition.

Figure 3 shows recognition results obtained for the various noise

types as a function of SNR, using AR models of orders 1, 2 and 3.

As a comparison, recognition with uncompensated noisy speech,

and with cepstra derived by VTS compensation [4] are also

shown. The VTS algorithm assumes stationary noise, which is

equivalent to considering an AR model of order 0 for then noise,

albeit without the sampling-based approach. 

6. DISCUSSION

The figures in Section 2 show that the AR model can effectively

describe the spectral dynamics of several kinds of noises typically

encountered during speech recognition. The experiments reported

in Section 5 confirm this to some degree. We observe from Figure

3 that the AR model based algorithms are generally highly effec-

tive at improving recognition performance on speech corrupted to

low SNRs by noise. At higher SNR the 0th order AR model is

ineffective in most cases, presumably since the noises used are in

reality non-stationary, whereas the 0th order model assumes sta-

tionary noise. The first order AR model is able to compensate

well for all noises at almost all SNRs, and is significantly better

than the 0th order AR model. However, increasing the AR order

any further does not result in any additional improvement in the

recognition accuracy, although the higher order AR model itself is

better able to predict the noise process, as shown by Figure 2. The

reason for the absence of improvement in recognition perfor-

mance, with increasing AR order may be intuited from Figure 2b.

The 0th order predictor in Figure 2b simply predicts every spec-

tral vector as the mean of the a priori distribution. The largest

improvement in prediction error is observed when the AR order

increases from 0 to 1. Further increase in the AR order results

only in relatively miniscule improvements in prediction error.

This correlates well with the results in Section 5, and suggests

that the prediction error of any predictive model for corrupting

noise may be used as an indicator of the potential gains in recog-

nition accuracy that might be obtained with that model.

Finally, Equation (12) is derived assuming that the power spectral

value of the noisy speech is never lesser than that of the noise

itself. This assumption, in turn, is based on the assumption that

the corrupting noise is perfectly uncorrelated with the speech sig-

nal itself. In practice, although the noise is uncorrelated with the

speech in the long term, within any given analysis window of

finite length it is possible for the energy in the noise spectrum to

be greater than that of the observed noisy speech. As a result,

noise estimates based on Equation (12) tend to be biased. This has

however not been observed to affect the performance of the parti-

cle-filtering algorithm adversely, in practice.
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Figure 3: Recognition performance on speech corrupted by four different
types of noises. Baseline word error rate (WER), and WERs obtained VTS
and the proposed dynamical systems algorithm are all shown.
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