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ABSTRACT

We aim to develop an acoustic model for noisy speech recogni-
tion that is “trained once, suits all”, in terms of offering a recog-
nition performance close to the matched training-testing condition
performance based only on clean speech training data. This pa-
per describes such a method termed universal compensation, for
its ability to accommodate arbitrary additive noise without assum-
ing any knowledge about the noise. The new UC method con-
sists of two parts: 1) converting full-band spectral corruption into
partial-band spectral corruption through compensations for simu-
lated wide-band flat-spectrum noise at consecutive SNRs (signal-
to-noise ratios), and 2) reducing the effect of the remaining partial
frequency-band corruption on recognition by ignoring the severely
mismatched spectral components and basing the recognition mainly
on the matched or appropriately compensated spectral components.
Experiments on Aurora 2 indicate that the new model, trained from
clean data, has achieved a performance comparable to the perfor-
mance obtained by the baseline system trained on multi-condition
data; experiments with noises unseen in Aurora 2 have shown sig-
nificant improvement for the new model over the baseline model
with multi-condition training.

1. INTRODUCTION

Speech recognition performance is known to degrade dramatically
when a mismatch occurs between training and testing conditions.
The mismatch between training and testing data can be caused by
a number of factors, with background noise being one of the most
prominent. Traditional approaches for removing the mismatch
thereby reducing the effect of noise on recognition include: 1) re-
moving the noise from the testing signal - known as noise filtering
or speech enhancement, and 2) constructing a new acoustic model
to match the appropriate testing environment - known as noise or
environment compensation. Examples of the noise filtering meth-
ods include spectral subtraction, Wiener filtering or RASTA filter-
ing (e.g. [1][2]), each assuming the availability of certain knowl-
edge such as the spectral characteristic of the noise. Examples
of the noise compensation methods include model adaptation and
multi-condition or multi-style training. Model adaptation adjusts
a current acoustic model to match a new environment, assuming
the availability of training data from the new environment (e.g.
[3]1[4]); multi-condition and multi-style training constructs acous-
tic models that are suitable for a number of noisy environments,
assuming the availability of training data from each of the environ-
ments (e.g. [5][6]). More recent studies are focused on the meth-
ods requiring less knowledge for the noise or environment, since
this can be difficult to obtain in real-world applications involving
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mobile environments, with unpredictable nonstationary noise. For
example, the recently studied missing-feature method (e.g. [7]-[9])
suggests that, when there is a lack of knowledge, we may alterna-
tively detect the severely distorted speech data and subsequently
ignore them in the recognition. This can reduce the effect of noise
on recognition while requiring less knowledge than usually needed
for noise removal or compensation. However, the missing-feature
method is only effective for partial noise corruption, i.e., the noise
only affects part of the speech representation.

This paper investigates noise compensation for additive back-
ground noise, assuming any corruption type (e.g. full, partial, sta-
tionary or time varying), and assuming no knowledge about the
noise and no training data from the noisy environment. We pro-
pose a new noise compensation method that is capable of accom-
modating all possible additive distortions, in terms of offering a
recognition performance close to the matched training-testing con-
dition performance, based only on clean speech training data. We
call the new method Universal Compensation (UC), for its abil-
ity to deal with arbitrary additive noise - with arbitrary temporal-
spectral characteristic — requiring no knowledge about the noise
nor training data from the noisy environment.

2. METHODOLOGY

The UC technique includes three steps ':

1. Construct a set of models for short-time speech spectra us-
ing artificial multi-condition speech data, consisting of the
clean training data and a collection of noisy training data
generated by corrupting the clean training data with artifi-
cial wide-band flat-spectrum noise at consecutive SNRs;

2. Given a test spectrum, search for the spectral components
in each model spectrum that best match the correspond-
ing spectral components in the test spectrum, and produce
a score based on the matched components for each model
spectrum;

3. Combine the scores from the individual model spectra to
form an overall score for recognition.

These three steps may be explained using a simple example, shown
in Fig. 1, assuming a single short-time spectrum (i.e. a frame). Fig.
1 shows, on the left-hand side, an instance of a clean speech spec-
trum, representing the data available for training. Wide-band flat-
spectrum noises with different SNRs are added, respectively, to
the waveform of the clean frame, to form the set of noisy training
data, i.e. Step 1. The noise may be generated by passing a white
noise through a low-pass filter with the same bandwidth as the
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Fig. 1. Illustration of the UC method. Left: a clean spectrum. Mid-
dle: model spectra formed by adding different levels of wide-band
flat-spectrum noise to the clean waveform (SNR decreases from
top to bottom). Right: a noisy test spectrum. The matched compo-
nents between the test spectrum and each of the model spectra are
enclosed within the circles on the appropriate model spectra.

speech spectrum. Assume that this leads to a set of model spectra,
shown in the middle of Fig. 1, each model spectrum corresponding
to a specific SNR, and including an appropriate compensation for
a wide-band flat-spectrum noise at that SNR. The clean spectrum
is also included in the model set (shown at the top of the model
spectra). Fig. 1 shows, on the right-hand side, an example of a
test spectrum, which is assumed to be the result of the clean frame
with the addition of some noise. The characteristic of the noise
spectrum can be arbitrary and is not known a priori. While the
test spectrum involves a full-band corruption with respect to the
clean spectrum, it involves only a partial-band corruption when
compared to some of the mode spectra, for example, model spec-
tra 2, 3, 4 and 5 in Fig. 1, assuming that a local frequency-band
distortion in the test spectrum due to the addition of a noise may
be matched by the corresponding model spectrum with the addi-
tion of a “flat-spectrum” noise in the same frequency band with a
similar SNR. These matched parts, for this particular example, are
enclosed within the circles over the appropriate model spectra. The
effect of partial-band corruption on recognition can be reduced by
ignoring the distorted spectral components and by basing the score
only on the matched or least distorted spectral components, i.e.
Step 2. Finally, the scores from the individual model spectra are
combined to produce an overall score, to indicate the probability
of the test spectrum associated with the model, i.e. Step 3.

The accuracy of the method for converting a full-band cor-
ruption into partial-band corruption is determined by two factors:
the frequency-band resolution and the amplitude resolution. The
band resolution determines the bandwidth for each spectral com-
ponent. The smaller this bandwidth, the more accurate the approx-
imation for an arbitrary noise spectrum by a flat spectrum located
in the same frequency band. The amplitude resolution refers to the
quantizing steps for the SNR, used to generate the wide-band flat-
spectrum distortion. Given the range of SNR, the finer the quan-
tizing steps, the more accurate the approximation for any level of
noise. Given a test spectrum, there may be some model spectra
without matched components. These model spectra can be ignored
in Step 3 assuming correspondingly low probabilities. Note that a
partial-band corruption remains partial in the conversion.

3. FORMULATION

Formulating the UC method is straightforward following the above
example. Assume that L levels of SNR are chosen to generate the
wide-band flat-spectrum noises to form the noisy training data, and
that each model spectrum is modeled by a probability distribution
for its spectral components. Denote by p(z | s,1) the probability
distribution for a model spectrum associated with speech state s
and trained for SNR level [, [ = 1,2, ..., L.

Assume that each short-time spectrum or frame consists of
N spectral components. Let o = (01,02, ...,0n) be a test spec-
trum, which may be corrupted by noise but knowledge about the
noise spectrum is not available. Recognition involves classify-
ing each test spectrum o into an appropriate state s, based on the
matching components between the test spectrum and each of the
model spectra associated with state s. Denote by o(s, [) the subset
in o containing all the matching components for model spectrum
p(z | s,1), addressed by (s, ). Both the size and components of
o(s,1) can be different from model spectrum to model spectrum.
Given o(s, 1) for each model spectrum (s, [), the overall probabil-
ity of o, associated with speech state s, can be defined as

plo]s) = w(s,Op(o(s,1) | 5,1) e9)

=1

where p(o(s, 1) | s,1) is the probability of o associated with model
spectrum (s, 1), and w(s, 1) is a weight, for the contribution from
the corresponding model spectrum. As described in Step 2, the
probability for a model spectrum is calculated based on the matched
components between the model spectrum and the test spectrum.
For simplicity, we assume that the individual spectral components
are independent of one another. So the probability p(osus | $,1)
for any subset 05,5 € 0 can be written as

p(osub | 57l) = H p(o'ﬂ | 87l) (2)

on €0sub

where p(zr | s,1) is the probability distribution of the nth spectral
component with model spectrum (s, 1).

Equation (1) is reduced to the standard mixture model when
all spectral components from the test spectrum are involved in the
computation (i.e. o(s,!) = o). This mixture model involving all
spectral components is used for the training data, to model speech
spectra without missing components. This model is estimated on
the training set consisting of both clean data and the artificial noisy
data. This estimation can be carried out in the same way as a
conventional mixture model using the standard EM algorithm.

Given the model, computing the mixture probability in (1) us-
ing only a subset of data for each of the mixture densities is re-
quired in testing for reducing the effect of uncompensated noisy
spectral components on recognition. To achieve this, we need to
decide, for each model spectrum (s, 1), the subset o(s, 1) € o that
contains all the matching components. In principle, the traditional
missing-feature methods concerning the identification of corrupt
data, based on an estimate of the local data reliability, could be
used to tackle this problem. In this paper, we consider a solution to
the problem by maximizing the appropriate probabilities. If we can
assume that the matched subset produces a large probability, then
o(s,1) may be defined as the subset 05,5 that maximizes the prob-
ability p(osub | $,1) among all possible subsets in 0. However, (2)
indicates that the value of p(0sus | s,1) is a function of the size of
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the subset 0,44, implying that the values of p(osus | s, 1) for differ-
ent sized subsets are of a different order of magnitude and are thus
not directly comparable. A possible solution to this is to replace
the conditional probability of the test subset, p(osus | $,1), with
the posterior probability of the model spectrum, p(s, | 0sys). The
posterior probability of model spectrum (s, 1) given a test subset
0sup 18 defined as

p(osub | S, l)p($7 l)
s/l p(osub ‘ 5/7 l/)p(8/7 l/)

(s, 1| 0sup) = 5 3)

where p(osub | s,1) is the conditional probability of test subset
0sub given model spectrum (s, 1), as defined in (2), and p(s, 1) is
the prior probability for model spectrum (s, I). The posterior prob-
ability p(s, 1 | 0sup) defined in (3) is normalized for the size of the
test subset, always producing a value in the range [0, 1] for any
sized 0sy5. Most importantly, it can be shown that this posterior
probability favors large matched subsets, i.e., it produces larger
values for the subsets containing larger numbers of matched com-
ponents. Thus, by maximizing the posterior probability p(s,! |
0sub) With respect to 0y, we should be able to obtain the sub-
set o(s, 1) for model spectrum (s, ) that contains all the matched
components in terms of the maximum a posteriori (MAP) crite-
rion. The following shows the optimum decision:

o(s,l) = arg max p(s,! | osub) 4)
Osub €O
Since the conditional probability p(osus | s, 1) and posterior prob-
ability p(s,l | osub) are proportional to each other, we replace
p(o(s,1) | s,1) in (1) by the optimized posterior probability in (4),
obtaining a modified version of (1) used for recognition:

plo|s) x Zw(s,l) max p(s,!| osup) )

o €o
= sub

Equation (5) can be incorporated into a hidden Markov model
(HMM), by using p(o | s) as the state-based emission probabil-
ity for frame vector o associated with state s.

4. EXPERIMENTAL EVALUATION

Aurora 2 is used to evaluate the performance of the new method.
The new method is incorporated into an HMM and trained using
only the clean training set. The clean training set is expanded by
adding wide-band flat-spectrum noise to each of the training utter-
ances at ten different SNR levels, starting with SNR=20dB, reduc-
ing 2dB every level, until SNR=2dB. The wide-band flat-spectrum
noise is computer-generated white noise filtered by a low-pass fil-
ter with a 3dB-bandwidth of 3.5kHz.

The speech is divided into frames of 25ms at a frame rate of
10ms. For each frame, we use a 12-channel mel-frequency filter
bank to estimate 12 log spectral energies (i.e. log FB energies).
These 12 log FB energies are decorrelated by using a decorre-
lation filter H(z) = 1 — 2z~ ", and are then grouped uniformly
into six subbands. For each decorrelated log FB energy, its delta
and delta-delta coefficients are also calculated and grouped into
six subbands in the same way as for the static spectral coefficients.
Thus, for each frame, we have a spectral vector consisting of a to-
tal of 18 components, six for the static spectral components, six
for the delta spectral components and six for the delta-delta spec-
tral components, for the six subbands. Each component contains

two coefficients, and so the overall size of the spectral vector for
a frame is 36. In the experiments, each digit is modeled by 15
states and each state is modeled with 32 mixtures, accounting for
the expanded training set including both the clean data and the ar-
tificial noisy data with ten SNR levels. Each mixture component
is a Gaussian density with a diagonal covariance matrix. The per-
formance of the new UC model is compared with the performance
of the baseline system defined by ETSI, presented in [5].

4.1. Tests on Aurora Conditions

A performance measure for a whole test set, as average word accu-
racy over all noises and over SNRs between 0 and 20dB, is intro-
duced in [5]. This measure is used to compare the results. Two
baseline systems are described in [5], one trained on the clean
training set and the other on the multi-condition training set. As
described, the new UC model is trained effectively using only the
clean training set from the database.

Table 1 shows the average performance on test set A, obtained
by the new UC model, compared with the results by the two ETSI
baseline systems. Fig. 2 further shows the results as a function of
SNR, averaged over all noises (including clean condition). Table
1 and Fig. 2 for test set A indicates that the new model has signifi-
cantly improved over the baseline system trained on clean data and
tested in noisy conditions, and that the new model has achieved an
accuracy comparable to the matched training-testing condition ac-
curacy without having assumed any knowledge about the noise.

Next, Table 2 shows the recognition results on test set B, for
the same systems used for test set A. The results as a function of
SNR averaged over all noises are also included in Fig. 2. The sim-
ilarity of the noise characteristics between test set A and test set B
is indicated by the similarity of the average performance between
Table 2 and 1, and between the corresponding curves in Fig. 2. As
shown in Table 2 and Fig. 2, the new UC model has offered slightly
better average performance than the baseline system trained on the
multi-condition data.

Finally, Table 3 shows the results on test set C, for the same
systems used above. The results as a function of SNR averaged
over the noises are also shown in Fig. 2. Comparing Table 3 with
Table 1 and 2, it is seen that the baseline system trained on multi-
condition data has experienced performance degradation on test
set C (e.g., the average accuracy dropped from 87.81% for test
set A to 83.77%), due to the mismatched channel characteristics
(i.e. MIRS versus G712). The new UC model, searching for the
matched components not only between the static spectra but also
between the channel-insensitive dynamic spectra, has coped with
this mismatch more effectively, offering an accuracy of 87.30%
for test set C that is close to the matched condition performance
(87.81%) for test set A. Fig. 2 indicates that the improvement for
the new model is more significant for low SNR conditions.

Table 1. Word accuracy (%) on test set A, averaged over SNRs be-
tween O - 20dB, for the new universal compensation (UC) model,
compared with the ETSI baseline systems

Model | Training Noise condition Ave.

set Sub. Bab. Car Exhib.

uc Clean 88.01 8536 9048 86.87 | 87.68
ETSI Clean 69.48 49.88 60.60 6539 | 61.34
ETSI Multi 88.75 8795 86.52 88.03 | 87.81
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Table 2. Word accuracy (%) on test set B

Model | Training Noise condition Ave.

set Rest. St. Air. Sta.

ucC Clean 84.49 88.00 86.89 87.09 | 86.62
ETSI Clean 52.59 6151 5325 55.63 | 55.74
ETSI Multi 8539 87.03 87.64 85.01 | 86.27

Table 3. Word accuracy (%) on test set C
Model

Training | Noise condition
set Subway  Street
ucC Clean 87.45 87.16 87.30
ETSI Clean 66.16  66.11 66.14
ETSI Multi 83.24  84.31 83.77

Average

4.2. More Noise Types

Two more noise conditions unseen in Aurora 2 are used to eval-
uate the new UC model and to compare its performance with the
performance of the baseline system trained on the Aurora multi-
condition data. The purpose of these tests is to further investigate
the ability of the new model to offer robust performance for a wide
variety of noises, i.e., the ability of “trained once, suits all”. These
two noises are: 1) a mobile phone ringtone, and 2) a pop song seg-
ment with a mixture of background music and the voice of a female
singer. The spectral characteristics of the two noises are shown in
Fig. 3. Table 4 presents the recognition results. As indicated in the
table, the new model has offered significantly improved accuracy
over the baseline model.

5. SUMMARY

A method capable of dealing with arbitrary additive noise based
only on clean speech training data is described. The new method,
termed universal compensation (UC), has been evaluated on Au-
rora 2. Trained using information from the clean training set, the
new method has achieved a performance comparable to the perfor-
mance obtained by the baseline system trained on multi-condition
data. Further experiments with noises unseen in Aurora 2 have
shown significant improvement for the new model over the base-
line model with multi-condition training.

Table 4. Word accuracy (%) with two noises, a mobile phone ring-
tone and a pop song, unseen in Aurora 2, for the new UC model,
compared with the ETSI baseline system

SNR | Model | Training Noise condition Ave.
(dB) set Ringtone  Pop song

10 ucC Clean 95.43 87.47 91.45

ETSI Multi 76.60 76.57 76.58

5 ucC Clean 92.82 79.18 86.00

ETSI Multi 64.29 63.16 63.72

0 ucC Clean 90.11 65.27 77.69

ETSI Multi 52.50 44.77 48.63
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