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ABSTRACT

In this paper we describe how we successfully extended the
Model-Based Feature Enhancement (MBFE)-algorithm to jointly
remove additive and convolutional noise from corrupted speech.
Although a model of the clean speech can incorporate prior know-
ledge into the feature enhancement process, this model no longer
yields an accurate fit if a different microphone is used. To cure the
resulting performance degradation, we merge a new iterative EM-
algorithm to estimate the channel, and the MBFE-algorithm to re-
move non-stationary additive noise. In the latter, the parameters
of a shifted clean speech HMM and a noise HMM are first com-
bined by a Vector Taylor Series approximation and then the state-
conditional MMSE-estimates of the clean speech are calculated.
Recognition experiments confirmed the superior performance on
the Aurora4 recognition task. An average relative reduction in
WER of 12% and 2.8% on the clean and multi condition training
respectively, was obtained compared to the Advanced Front-End
standard.

1. INTRODUCTION

To cure the performance degradation of automatic speech recog-
nition systems in the presence of both additive noise and channel
variations, several compensation techniques are often combined
(e.g. Spectral Subtraction and CMS, Wiener filtering and blind
equalisation [1]). However, results indicate that a joint estimation
of both types of noise is feasible [2, 3]. In this paper we focus on a
technique that simultaneously removes additive and convolutional
noise from the acoustic feature sequence prior to recognition.

Previously we have implemented an MBFE-algorithm for
noise robust speech recognition [4], the ideas of which were first
introduced by Ephraim [5] in the context of speech enhancement.
In this technique we use one Hidden Markov Model (HMM) with
Gaussian observation probabilities for the clean speech cepstral
feature vectors, and another Gaussian HMM for the perturbing
noise cepstral feature sequence. Based on these statistical models,
the parameters of a combined HMM of the noisy speech are esti-
mated. To this end, the non-linear model of the acoustic environ-
ment in the cepstral domain is approximated by a first order Vector
Taylor Series. Subsequently, the resulting product HMM is used to
calculate the a posteriori probabilities of each combined (speech,
noise) state corresponding to a sequence of observation vectors.
For each combined state pair also an estimate of the correspond-
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ing clean speech can be calculated. Finally, the global MMSE-
estimate of the clean speech, given the noisy speech, is obtained as
a linear combination of these state-conditional estimates weighted
by the a posteriori probabilities.

In this work a valuable extension to the MBFE-algorithm is
proposed, that enables us to simultaneously remove additive back-
ground noise and convolutional channel distortions. Especially for
MBFE, such a joint noise removal is superior to successively re-
moving these 2 types of mismatch effect between training and test-
ing conditions. The reason is that the MBFE-speech model, trained
with one microphone, no longer yields an accurate fit if a different
microphone is used. Moreover, this model mismatch also affects
the additive noise parameter estimation. Hence, we are convinced
that incorporating the effect of convolutional distortions into our
speech model will further improve the accuracy. To this end, we
propose an iterative EM-algorithm that updates an initial channel
estimate to maximise the likelihood of the observed data. Once
initialised, our algorithm proves to generate a stable channel esti-
mate, even when only silence frames are observed (and hence no
speech or channel information are present in the observed data).

Section 2 presents a detailed description of the extended
MBFE-algorithm to simultaneously remove additive and convo-
lutional noise. An evaluation of the performance of the resulting
preprocessing technique on the Aurora4 large vocabulary dicta-
tion task and the obtained recognition accuracy, can be found in
section 3. Finally, conclusions and directions for future work are
discussed in section 4.

2. CONVOLUTIONAL MBFE

2.1. Effect of convolutional noise

The parametric model of the acoustic environment, used in this
work, is very similar to [6], and is shown in figure 1. Since the
enhancement takes place in the cepstral domain, the approximate
relationship between the distorted speech vector xt , the additive
noise nt , the channel h and the clean speech st of frame t , is given

noisy speech

noise

+hchannel
clean speech

s(t) z(t) x(t)

n(t)

Fig. 1. Model of the acoustic environment.
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Fig. 2. HMM combination principle with iterative channel estima-
tion.

by:
xt ≈ f (st , nt , h)

≈ C log
(
exp

(
C−1 (st + h)

)
+ exp

(
C−1 nt

))
(1)

in which C−1 denotes the inverse of the DCT-matrix C . In MBFE
both st , nt as well as xt are modeled by HMMs in the cepstral do-
main with Gaussian observation pdfs for each state q, as explained
in [4]:

p
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(i, j ), �

x
(i, j )) (4)

Here, the parameters of the corrupted speech HMM λx are ob-
tained by using a first order Vector Taylor Series (VTS) approxi-
mation around the means µs

i and µn
j to linearise eq. (1) for each

state. From eq.(1) it is clear that the channel h causes a shift of the
clean speech model means µs

i , such that this MBFE-model will no
longer yield an accurate fit if a different microphone is used. How-
ever, once this channel is known, we can simply shift our speech
model and apply MBFE as before to remove the non-stationary
additive noise. A global scheme of this procedure is depicted in
figure 2. Briefly, the global MMSE-estimate of the clean speech is
obtained as a linear combination of the state-conditional MMSE-
estimates, where the weights are given by the a posteriori prob-
abilities. To account for correlation effects, we take the square
root (experimentally tuned) of the observation probabilities in the
forward-backward algorithm, in which also an approximation of
the dynamic parameters of xt is used. To obtain the latter, the gra-
dients F and G of eq.(1) to st and nt , are assumed to remain con-
stant across the time-interval on which the deltas are calculated,

such that the mean and the covariance of the deltas become:

µ�x
(i, j ) ≈ F(i, j ) µ�s

i + G(i, j ) µ�n
j (5)

��x
(i, j ) ≈ F(i, j ) ��s

i F
′

(i, j ) + G(i, j ) ��n
j G

′

(i, j ) (6)

and similarly for the delta-deltas. The next section describes the
iterative EM-algorithm to estimate the channel online.

2.2. Channel estimation

The auxiliary function that is optimised by the iterative EM-
algorithm, is given by [7]:

Q(h′|h) =
∑
(i, j )

p(i, j |x, h, λx ) log
(
p(x, i, j |h, λx )

)
(7)

or alternatively, the following function needs to be maximised:
∑
(i, j )

γ
(i, j )
t log

(
p(x|i, j, h, λx )

)
(8)

Here i and j are hidden variables that denote the speech and the
noise state sequence respectively, x is the observed noisy speech,

and γ
(i, j )
t are the a posteriori probabilities as mentioned before.

Because of the Gaussian form of p(x|i, j, h, λx ) (eq. (4)), this
problem can be rewritten as a maximisation of

∑
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−
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Then the following approximations are applied. Firstly, since F
and G are non-linear functions of h, we neglect the change of �x

(i, j)
with different values of h. Secondly, we linearise the dependency
of µx

(i, j) around h, such that we can write
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in which ′ indicates matrix transpose, and the gradients of the com-
bination function f (st , nt , h) have the closed form :

F(i, j ) = C diag

⎛
⎝ 1

1 + exp
[
C−1 (µn

j − µs
i − h)

]
⎞
⎠ C−1 (13)

G(i, j ) = I − F(i, j ) (14)

and I denotes the unity matrix. This way, δQ
δh = 0 yields

0 =
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(15)
and hence the channel update is given by:
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Fig. 3. Effect of noise frames on MBFE channel estimate. (top):
Noisy speech utterances embedded in noise-only frames. (bottom):
MBFE channel estimate in cepstral domain.

To come to a real-time implementation, this channel update for-
mula is implemented with an exponential weighting of numerator
and denominator. One of the advantages of eq. (16), compared
to CMS for instance, is that it does not need a voice activity de-
tector. Indeed, in case the input data contains only additive noise
(no speech and no channel) the gradient F(i, j ) approximates zero,
such that the update δh automatically becomes very small. Al-
though eq. (16) exhibits a strong similarity with the one in [8] to
remove convolutional filtering effects, the latter does not have this
advantage. Experiments confirmed that a good recognition accu-
racy can be obtained with zero as an initial channel estimate, then
applying 10 EM-iterations on the first 500 frames, while for every
next 100 frames exponential weighting and only 5 EM-iterations
are applied. The stability of our channel estimate in the presence
of noise, can clearly be seen in figure 3. This plot shows an utter-
ance (between the vertical bars) from the Aurora2 database (setC,
N1, SNR15), that is embedded in noise-only frames from the same
noise condition. On the left of the vertical bars, we see that ĥ is not
updated after initialisation, while in the middle part the channel es-
timate converges to a stable value during the noisy speech frames.
Finally, on the right of the bars, this obtained value is again hardly
changed during the noise-only input frames. We conclude that the
influence of the noise frames on the obtained channel estimate is
very small.

3. EXPERIMENTS

3.1. Front-end processing

Experiments were conducted on the Aurora4 large vocabulary
database, derived from the WSJ0 Wall Street Journal 5k-word dic-
tation task. For each of the 2x7 test sets (no noise, car, babble,
restaurant, street, airport, train), all 330 utterances, with an SNR-
level that ranges from 5 dB to 15 dB, are evaluated.

To extract the acoustic features from the speech signal, first
a power spectrum is calculated every 10 ms on a 32 ms window
of the pre-emphasized 16 kHz data. Then a Hamming window

and a mel-scaled triangular filter-bank are applied, and the result-
ing mel spectrum with 24 coefficients is transformed into the cep-
stral domain. From this static parameter set, the global MMSE-
estimate of the clean speech is then calculated by the extended
MBFE-algorithm. Afterwards, each sentence is smoothed by the

low-pass filter H(z) = 1/
(

2 − z−1
)2

. As in [4], the first and last

mel spectra are then removed and the remaining 22 spectral coef-
ficients are mean normalised. Finally, the 66 features that result
from adding the first and second order time derivatives, is reduced
by the MIDA-algorithm to 39 dimensions, which are then decorre-
lated.

3.2. Back-end recogniser

The speaker-independent LVCSR-system that has been developed
by the ESAT speech group of the K.U.Leuven, is used as a back-
end recogniser because of its fast experiment turn-around time and
good baseline accuracy.

The gender independent acoustic modeling is based on a set
of 45 phones, without specific function words. A phonetic deci-
sion tree, developed for the clean and multi condition training data
respectively, defines the 4961 tied states in the cross-word context-
dependent (but position-independent) models. In the first training
step, acoustic models without tying of the Gaussians are initial-
ized, resulting in a total of 21k Gaussians. Then full tying over
all states is allowed, the 2k most promising Gaussians per state
are selected based on the distances between Gaussians (to avoid
prohibitively large models) and the models are re-estimated in the
second training step. Finally, the number of Gaussians is further
reduced to an average of 200 per state, using the occupancy crite-
rion, and the third training step is applied.

A bigram language model for a 5k-word closed vocabulary is
provided by Lincoln Laboratory, while decoding is done with a
time-synchronous beam search algorithm.

3.3. MBFE front-end models

The design of the MBFE front-end noise model and clean speech
model is now described. In our experiments the noise model con-
sists of a one-state single-Gaussian HMM. This HMM is obtained
by estimating the mean on the first 30 and the last 30 frames of
each sentence. As before [4], the variance of this Gaussian is es-
timated from the same 60 frames, but is pooled over all 330 sen-
tences of the noise type, thereby simulating the scenario in which
some of the noise model parameters can be estimated offline. The
choice of this noise HMM topology is motivated by previous re-
sults, which indicated little performance loss as compared to more
complex noise models, while offering a tractable computational
load.

This noise model is combined with a very simple speech
model, namely instead of a phoneme HMM we use an 128 Gaus-
sian ergodic HMM. The latter is obtained by EM-clustering the
clean training dataset provided in the Aurora4 database. Although
an ergodic HMM incorporates less prior knowledge on the allowed
state sequence during decoding, incorrect decisions can easier be
corrected by the more detailed acoustic models in the back-end
recogniser. Experimental results showed that the recognition accu-
racy is hardly affected with this simpler speech model, even though
in this model less Gaussians are used. It was also verified that clus-
tering the clean training dataset to more Gaussians (256 or 512)
yielded no significant accuracy gain. This implies that not only
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Aurora4, 16 kHz sampling, no compression, no end pointing.
Close Talk Far Talk

TEST 1 2 3 4 5 6 7 mic 1 8 9 10 11 12 13 14 mic 2 Avg.

clean
MIDA 4.95 17.97 32.84 39.88 36.67 28.21 38.24 28.39 23.59 39.44 50.68 55.35 56.81 47.30 56.42 47.08 37.74
AFE 5.44 17.88 23.07 27.93 26.86 22.90 24.72 21.26 25.31 35.40 42.26 43.62 46.12 42.14 42.87 39.67 30.47

MBFE 4.88 8.67 20.85 28.99 23.95 22.10 23.15 18.94 21.91 30.30 39.42 44.55 42.93 39.62 42.24 37.28 28.11
conv MBFE 4.93 8.43 20.51 28.81 22.77 20.68 23.30 18.49 19.24 26.98 37.40 42.91 40.87 38.09 40.11 35.09 26.79

multi
MIDA 7.77 9.04 15.86 19.54 17.88 14.65 19.93 14.95 15.43 18.53 30.17 31.44 33.03 28.34 34.17 27.30 21.13
AFE 6.84 10.84 15.28 19.19 18.05 14.46 17.62 14.61 16.27 22.03 29.42 31.31 32.43 28.41 30.97 27.26 20.94

MBFE 7.15 8.35 15.73 21.02 17.84 15.82 17.99 14.84 17.39 21.11 30.75 33.53 33.83 30.64 33.96 28.74 21.79
conv MBFE 7.25 8.03 15.75 20.21 16.91 15.65 17.04 14.41 13.21 17.58 28.99 32.22 31.23 28.96 32.06 26.32 20.36

Table 1. Word error rates without enhancement, with Advanced Front-End preprocessing, with MBFE-enhancement and with convolutional
MBFE-enhancement; clean and multi condition training.

the computational load, which is proportional to the total number
of Gaussians, is decreased, but also the forward-backward algo-
rithm becomes trivial and the training of the speech model is less
complex.

3.4. Experimental results

The first reference results (labeled MIDA in table 1) are obtained
by leaving out the MBFE-enhancement and the smoothing from
the processing steps described in 3.1. For these features, no ex-
plicit (additive) noise reduction algorithm is applied. Secondly,
features are preprocessed by the standard AFE, without compres-
sion [9]. However, to increase the level of comparability, the dy-
namic coefficients are not calculated by the reference scripts. Also,
no frames are dropped by a feature vector selection. After this en-
hancement, again the first and last mel-spectra are removed, and
the MIDA-algorithm and a decorrelation are applied. Finally, we
show the recognition results when MBFE is applied, without and
with channel estimation.

In table 1, mic1 and mic2 denote the average of the first 7 and
the last 7 noise conditions, respectively. The results indicate that
the WER decreases significantly when the channel estimation pro-
cess is integrated in the MBFE-algorithm. This confirms the better
match of the MBFE-speech model when the effect of a different
microphone is estimated and accounted for in the front-end pro-
cessing. For the clean training condition, a relative reduction in
WER of 29% compared to no enhancement, and 12% compared to
the AFE is obtained. Finally, when the back-end acoustic models
are trained on noisy, preprocessed data (multi condition training),
MBFE outperforms the AFE with a 2.8% relative WER-reduction.

4. CONCLUSIONS

In this paper we have shown how the MBFE-algorithm success-
fully can be extended to jointly remove additive and convolutional
noise. The presented EM-algorithm yields a stable estimate of the
channel that is hardly affected by the non-speech frames. Experi-
mental results showed the superior performance of MBFE com-
pared to the AFE for the Aurora4 large vocabulary recognition
task, which confirms the better match between the clean speech
estimates and the back-end acoustic models.

Nevertheless, further optimisations in the context of MBFE
can still be considered, such as finding the optimal method to train
the noise model. Currently, the noise HMM is fixed for each noise
condition (i.e. SNR-level and noise type). However, with an online
adaptation of the noise model, frames that are highly likely to con-
tain only noise could be used to adapt the mean of the noise HMM
to the varying environment.
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