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ABSTRACT

Subspace filtering is an extensively studied technique that has
been proven very effective in the area of speech enhancement to
improve the speech intelligibility. In this paper, we review dif-
ferent subspace estimation techniques (Minimum Variance, Least
Squares, Singular Value Adaptation, Time Domain Constrained
and Spectral Domain Constrained) in a modified singular value
decomposition (SVD) framework, and investigate their capability
to improve the noise robustness of speech recognisers. An exten-
sive set of recognition experiments with the Resource Manage-
ment (RM) database showed that significant reductions in WER
can be obtained, both for the white noise and the coloured noise
case. Unlike for speech enhancement approaches, we found that
no truncation of the noisy signal subspace should be done to opti-
mise the recognition accuracy.

1. INTRODUCTION

One solution to mitigate the performance degradation of automatic
speech recognition systems in noisy operating environments, is
to enhance the observed speech prior to the recogniser’s prepro-
cessing and decoding operations. At first sight, the enhancement
step can be performed independently of the recognition process
by one of the manifold available (single-microphone) speech en-
hancement algorithms. However, the main objective of noise re-
duction in speech enhancement and in automatic speech recogni-
tion differs. While the first tries to improve the intelligibility of
the speech and/or to ease listener’s fatigue, the latter is effective
if it succeeds in closing the gap between noisy and clean speech
recognition accuracy. Nevertheless, a correlation can be expected
between the improvements in speech quality on the one hand, and
the improvement in recognition accuracy on the other hand.
A particular class of speech enhancement techniques, that has
gained a lot of attention, is signal subspace filtering. In this ap-
proach, a non-parametric linear estimate of the unknown clean
speech signal is obtained, based on a decomposition of the ob-
served noisy signal into mutually orthogonal speech and noise
subspaces. This decomposition is possible under the assumption
of a low-rank linear model for speech and an uncorrelated addi-
tive (white) noise interference. Noise reduction is then obtained
by nulling the noise subspace (Least Squares (LS) estimation),
combined with a suppression of the noise threshold in the speech
subspace (Minimum Variance (MV) or Singular Value Adaptation
(SVA) estimators). Although this theory is developed for white
noise, it can easily be extended to general coloured noise if the
noise covariance matrix is known (or estimated). A theoretical

analysis of the underlying principles of subspace filtering can e.g.
be found in [1, 2]. In [2] a subspace-based speech enhancement
with noise shaping is proposed. Based on the observation that sig-
nal distortion and residual noise can not be minimised simultane-
ously, two new linear estimators are designed – Time Domain Con-
strained (TDC) and Spectral Domain Constrained (SDC) – that
keep the level of the residual noise below a chosen threshold while
minimising signal distortion. Parameters of the algorithm control
the trade-off between residual noise and signal distortion. In per-
ceptual subspace speech enhancement, the residual noise is shaped
according to an estimate of the clean signal masking threshold, as
discussed in recent papers [3, 4]. The excellent noise reduction
capabilities of subspace filtering techniques are confirmed by sev-
eral studies, both with the basic LS estimate [5] and with the more
advanced optimisation criteria [2, 6, 7]. Especially for the MV and
SDC estimators, a speech quality improvement that outperforms
the Spectral Subtraction approach is revealed by listening tests.
Very few papers discuss the application of signal subspace meth-
ods to robust speech recognition. In [8] an energy-constrained sig-
nal subspace (ECSS) method is proposed based on the MV esti-
mator. For the recognition of LV-CS corrupted by additive white
noise, a relative reduction in WER of 70% is reported. In [9], MV
subspace filtering is applied on a LV-CSR task distorted with white
and coloured noise. Significant WER reductions are reported that
outperform spectral subtraction. To our knowledge, no results with
other signal subspace estimators than MV were reported.
In this paper we investigate the impact of five different subspace
estimation techniques on the noise robustness of LV-CSR, and
compare their performance, both for white and coloured noise
removal. Some crucial parameters, such as the analysis window
length, the Hankel matrix dimensions, the signal subspace dimen-
sion, and method-specific design parameters will be discussed.

2. SUBSPACE FILTERING

2.1. Basic Theory

Let s(k), k = 1 . . . N represent a N-dimensional vector of clean
speech samples and n(k), k = 1 . . . N be the zero-mean, additive
white noise distortion that is assumed to be uncorrelated with the
clean speech. The observed noisy speech x(k), k = 1 . . . N is then
given by

x(k) = s(k) + n(k)

Further, let Rx , Rs , and Rn be N × N covariance matrices from
x(k), s(k) and n(k) respectively. It is clear that

Rx = Rs + Rn
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The eigenvalue decomposition (EVD) of Rs , Rn and Rx can be
written as follows

Rs = U E UT (1)

Rn = U (σ 2
w I )UT (2)

Rx = U (E + σ 2
w I )UT (3)

with σ 2
w the white noise variance and I the identity matrix. Ob-

serve that the eigenvectors of the noise are identical to the clean
speech eigenvectors due to the white noise assumption.
Speech and noise are separated based on the assumption that
the clean speech is confined to a p < N dimensional subspace,
the so-called signal subspace, whereas the noise occupies the N-
dimensional observation space. This implies that E has only p
non-zero eigenvalues ei , such that the EVD of Rx can be rewritten
as :

Rx = [
UpUN−p

] ([
EpEN−p

] + σ 2
w

[
Ip IN−p

]) [
UT

p UT
N−p

]
if we assume that the elements ei of E are in descending order.
Regardless of the specific optimisation criterion, speech enhance-
ment is now obtained by

(1) restricting the enhanced speech to occupy solely the signal
subspace by nulling its components in the noise subspace

(2) changing (i.e. lowering) the energy of the eigenvalues that
correspond to the signal subspace

Mathematically this enhancement procedure can be written as a
linear filtering operation on the noisy speech x(k) :

ŝ = Fx

with the filter matrix F given by :

F = Up G p UT
p

in which the p × p diagonal matrix G p contains the weighting
factors g(i) for the first p eigenvalues of Rx , while UT and U are
known as the KLT (Karhunen Loeve transform) matrix and inverse
KLT matrix, respectively.
In many implementations the above covariance matrices are esti-
mated as Rx =Hx HT

x with Hx a Hankel/Toeplitz signal observa-
tion matrix. In that case an equivalent speech enhancement can be
obtained via the SVD of Hx . A commonly used modified SVD
based speech enhancement procedure proceeds as follows :
Let Hx (= Hs +Hn) be a m×q (m+q = N +1 and m > q) noisy
Hankel/Toeplitz matrix constructed from x , with SVD

Hx = U�V T

The enhanced matrix Ĥs is then obtained as

Ĥs = Up G p �p V T
p

or

Ĥs =
p∑

i=1

g(i) σi ui vT
i

from which the enhanced signal ŝ(k) is recovered by averaging
along the diagonals (Toeplitz) or anti-diagonals (Hankel) of Ĥs .
An equivalent FIR filter implementation of this overall procedure
is described in [10].
The main advantage of working with the SVD, instead of the EVD,
is that the first scheme requires less computations since no ex-
plicit estimation of the covariance matrix is needed. Therefore,
our speech enhancement algorithm is implemented in terms of the
SVD, and this paper will further focus on the SVD description.

2.2. Optimisation criteria

By applying a specific estimation criterion, the elements of the
weighting matrix G p can be found. In this section the most com-
mon of these criteria are briefly reviewed.

Least Squares (LS) The LS estimate ĤLS is defined as the best
rank-p approximation of Hx ,

min
rk(ĤLS)=p

||Hx − ĤLS||2F

and is obtained by truncating the SVD U�V T of Hx to rank p

ĤLS = Up �p V T
p

Observe that this estimate removes the noise subspace, but keeps
the noisy signal unaltered in the signal subspace. This estimate
yields an enhanced signal with the highest residual noise level but
with the lowest signal distortion.

Minimum Variance (MV) Given the rank p of the clean
speech, the MV estimate ĤMV is the best approximation of the
original matrix Hs that can be obtained by making linear combi-
nations of the columns of Hx

ĤMV = min
T∈ Rq×q

||Hx T − Hs ||2F

In algebraic terms, ĤMV is the geometric projection of Hs onto
the column space of Hx , and is obtained by setting

gMV (i) = 1 − σ 2
w

σ 2
i

The MV estimate is the linear estimator with the lowest residual
noise level [1, 11].

Singular Value Adaptation (SVA) In the SVA method the sin-
gular values of Hx are mapped onto the estimated original (clean)
singular values of Hs , by setting

gSV A(i) =
√

σ 2
i − σ 2

w

σi

The mapping operator of the SVA method is defined by [11]

min
rk(ĤSVA)=p

||Hs − ĤSVA||2F

Time Domain Constrained (TDC) The TDC estimate is found
by minimising the signal distortion while setting a user-defined
upper bound on the residual noise level via a control parameter
µ ≥ 0. In the modified SVD of Hx , gTDC(i) is equal to

1 − σ 2
w

σ 2
i

1 − σ 2
w

σ 2
i

(1 − µ)

A detailed description can be found in [2].

Spectral Domain Constrained (SDC) A simple form of resid-
ual noise shaping is provided by the SDC estimator. Here, the
estimate is found by minimising the signal distortion subject to
constraints on the energy of the projections of the residual noise
onto the signal subspace. However, it is not possible to exploit the
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information obtained from a masking model. More than one solu-
tion for the gain factors in the modified SVD exists. One possible
expression for gSDC(i) is [2]

gSDC−1(i) =
√√√√exp

(
−β σ 2

w

σ 2
i − σ 2

w

)

with β ≥ 1. We will further refer to this estimator as SDC-1. An
alternative solution [2] is to choose

gSDC−2(i) =
(

1 − σ 2
w

σ 2
i

)γ /2

with γ ≥ 1, further denoted as SDC-2. The amount of noise re-
duction can be controlled by the parameters β and γ .

2.3. Implementation issues

The use of SVD based filtering implies the careful choice of cer-
tain parameters. In this section we discuss the impact of the most
important ones, namely the frame length N , the dimensions of Hx ,
and the dimension p of the signal subspace.

Signal Subspace dimension In theory the dimension of the sig-
nal subspace is defined by the order of the linear signal model.
However, in practice the speech contents will strongly vary (e.g.
voiced versus unvoiced segments) and the entire signal will never
exactly obey one model. Several techniques, such as Minimum
Description Length (MDL) were developed to estimate the model
order. Sometimes, the order p is chosen on a frame-by-frame ba-
sis, and e.g. chosen as the number of positive eigenvalues of Rs .
For 16 kHz data the value of p is usually around 12.

Frame length The frame length N must be larger than the order
of the assumed signal model, such that the correlation that is em-
bedded in the speech signal can be fully exploited to split the latter
signal from the noise. On the other side, the frame length is lim-
ited by the time over which the speech and noise can be assumed
stationary (usually 20 to 30 ms). Besides, N must not be too large
to avoid prohibitively large computations in the SVD of Hx .

Matrix dimension Observe that the dimensions m ×q of Hx
cannot be chosen independently due to the relation m+q = N+1.
The smaller dimension q of Hx should be larger than the order of
the assumed signal model, such that the correlation between the
clean signal samples can be exploited to separate the speech from
the noise. A sufficiently high value for q is beneficial for effec-
tive noise removal, since the (pre)white(ned) noise will be equally
distributed over all dimensions.

3. EXTENSION TO COLOURED NOISE

If the additive noise is not white, the assumptions made above are
no longer valid and a different procedure should be applied. How-
ever, the modified SVD noise reduction scheme can easily be ex-
tended to the general coloured noise case.
If the noise covariance matrix Rn can be estimated (from noise-
only input segments), a prewhitening operation can be applied
based on the QR factorisation of Rn . Indeed, if

Hx R−1 = (Hs + Hn)R−1

then (
Hn R−1

)T (
Hn R−1

)
= QT Q = I

A corresponding dewhitening operation should be included after
the SVD modification.
Because subsequent pre- and dewhitening can cause a loss of
accuracy due to numerical instability, usually an implicit pre-
and dewhitening is performed by working with the quotient SVD
(QSVD) of the matrix pair (Hs , Hn) [7].
A major drawback of pre- and dewhitening is that not only the
additive noise but also the original signal is effected by the trans-
formation matrices. The optimisation criteria (e.g. minimal sig-
nal distortion) will hence be applied to a transformed (= distorted)
version of the speech and not to the original speech. It can be theo-
retically shown that in this case only an upper-bound of the signal
distortion is minimised. Alternatively, the pre- and dewhitening
can be avoided by projecting the coloured noise onto the clean
signal subspace,

�c,proj =
√

UT RnU

with U obtained from Rs =UEUT [12].

4. RECOGNITION EXPERIMENTS

In this section we describe the results of LV-CSR experiments, in
which the SVD based speech enhancement procedure is used as
a preprocessing step, prior to the recognisers’ feature extraction
module. Experiments are carried out with all five above mentioned
estimators.

Evaluation Database As test material we took the Resource
Management (RM) database. These data are considered as clean
data, to which distortions were artificially added. The SNR-ratio
is determined in the same way as in the Aurora 4 benchmark
database [13]. The ratio of signal to noise energy is defined af-
ter filtering both signals with the G.712 characteristic. To deter-
mine the speech energy the ITU recommendation P.56 is applied
by using the corresponding ITU software. The noise energy is cal-
culated as RMS value with the same software. Two noise types
were added to the clean speech, namely (1) white noise w(k), and
(2) coloured noise c(k) (obtained as low-pass filtered white noise,
c(z) = w(z) + w(z−1)), both at various SNR ratios (5, 10, 15, 20,
25 and 30 dB).

Speech Recogniser For the assessment of the different sub-
space approaches we use the speaker-independent LV-CSR sys-
tem that has been developed by the ESAT-PSI speech group of the
K.U.Leuven. The system is beneficial for this purpose because of
its fast experiment turn-around time and good baseline accuracy.
In the preprocessing, the common MEL cepstral coefficients are
combined with their first and second order derivatives (25 features
in total). To remove convolutional noise distortions, a CMS step
is included. The acoustic modeling is based on a set of 46 phones.
Each of the 139 HMM states is modelled by a mixture of 128 tied
gaussian distributions, which are selected from a total set of 4526
gaussians. Training is performed with the original clean RM data;
no retraining with SVD enhanced speech material is conducted. A
word-pair grammar (WPG) language model for the 1k-word vo-
cabulary is used, while decoding is done with a time-synchronous
beam search algorithm. The training material consists of the SI-
109 train set, while testing is done with the feb89 testset.

Results The estimation criteria mentioned above, are compared
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White Noise Coloured Noise
SNR (dB) 5 10 15 20 25 30 5 10 15 20 25 30

Ref 2.30 4.57 25.07 52.13 73.45 85.63 1.91 12.10 41.62 67.51 83.16 90.82

LS 2.73 14.17 41.62 67.67 82.43 89.34 2.42 19.29 51.19 71.81 84.97 91.14
MV 14.14 42.68 71.22 86.26 91.21 93.05 17.53 50.06 75.79 88.95 91.64 92.97
SVA 6.60 31.12 64.86 82.35 90.12 92.31 9.14 37.13 69.97 84.07 89.50 91.84
TDC 18.00 46.00 73.72 87.15 91.57 93.17 24.95 53.30 77.39 88.99 91.80 92.89
SDC-1 7.77 38.34 67.24 83.52 88.64 90.63 15.50 42.33 72.20 86.22 89.54 89.81
SDC-2 16.75 47.56 74.81 86.84 91.37 93.06 22.18 51.27 75.95 88.99 91.68 92.98
COPY-SPEC 34.24 61.81 80.94 89.22 91.57 92.82 33.78 58.38 77.35 87.39 91.80 92.82

Table 1. Recognition rates (%) with SVD based speech enhancment — RM feb89 test set.

in a series of recognition experiments. For each estimator we var-
ied the values of the main algorithm parameters (frame length, sub-
space order, . . . ) to find the “optimal” performance.
Table 1 presents the reference recognition rates (i.e. without noise
reduction) together with the best recognition rates for each of the
estimation criteria. The analysed frames (no windowing) have a
30 ms length with 50% overlap ; the enhanced frames are ham-
ming windowed for resynthesis of the enhanced signal. The clear
differences in reference recognition rates between the white and
coloured noise case are mainly due to the definition of SNR that
“underestimates” the SNR for low-frequency noise sources. For
completeness, we mention that the recognition accuracy for the
original clean data is 95.12%. For the TDC and SDC estimators,
the best results are obtained with µ=3, β =1 and γ =4.
The results of the COPY-SPEC estimator are obtained by a cheat-
ing experiment, in which the noisy singular values are replaced
by the singular values of the clean Hankel matrix Hs : if Hs is
known with SVD given by Us�sV T

s , and if Hx = U�V T then
Ĥ = U�sV T . Intuitively, these results give an indication of an
upper-bound on the recognition accuracy that could be obtained
with SVD based filtering.
From our experiments we further learn that (1) the MV, TDC and
SDC-2 estimators are most effective, (2) except for the LS case,
the order p of the signal subspace should be almost equal to q
(no nulling of the noise subspace), (3) the optimal order q of the
Hankel matrix is between 8 and 20, (4) the frame length is best
between 10 and 30 ms, and (5) the QSVD and the noise projection
method yield comparable results for the coloured noise case.

5. CONCLUSIONS

In this paper we compared several subspace filtering estimators
and showed that these techniques can significantly increase the
noise robustness of LV-CSR. The MV estimator and its generalisa-
tion, the SDC estimator, proved to give the best recognition accu-
racy. Interestingly, we found that their performance remains rather
constant under mild violations of the optimal parameter values in
the algorithm. Our current focus is on the assessment of these tech-
niques in non-stationary noise conditions and on the incorporation
of a psycho-acoustic model to achieve a perceptual shaping of the
residual noise.
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