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ABSTRACT
In this paper, we evaluated the speech recognition in real driv-
ing car environments by using a GMM based speech estimation
method and an EM algorithm based channel noise estimation method.
The GMM based speech estimation method proposed by Segura et
al was not robust for channel noise such as an acoustic transfer
function, a microphone characteristic and so on. To cope with this
problem, we propose a channel noise estimation method based on
the EM algorithm. Furthermore, we estimate the speech signal
more accurately by using a speech GMM and a silence GMM in-
stead of the GMM trained without speech/silence discrimination.
Our proposed method has been evaluated on the AURORA3 tasks.
In the evaluation results, the proposed method showed the signif-
icant improvement in the high-mismatched condition test of AU-
RORA3 tasks.

1. INTRODUCTION
In recent years, many types of speech recognition systems have
been proposed and developed toward the practical use in a real
world. However, most of the works recognize clean speech col-
lected in quiet environments. In practical use it is required for
recognition systems to be robust to interfering noises.

Robust speech recognition systems are classified into two types.
One adapts itself to any kinds of noises based on model adaptation
techniques[1]-[4]. The other reduces the noise component from
noisy speech based on noise reduction techniques[5, 6].

Parallel model combination(PMC) method[1] has been pro-
posed which adapts the speech recognition system to any kinds of
noises. To improve the recognition accuracy under non-stationary
noisy environments, a compensation method for time varying resid-
ual noise has been proposed[3]. However, PMC has a problem
that it needs a huge quantity of computation, if it is applied to the
acoustic model for a large number of phonemes with mixture dis-
tributions like a triphone model HMM.

On the other hand, spectral subtraction(SS) method[5] has been
proposed as a conventional noise reduction method. However, SS
has a problem that it degrades the recognition rate due to spectral
distortion caused by over or under subtraction. In addition, the SS
does not consider the time varying property of noise spectra, be-
cause it estimates the noise spectra as mean spectra within the time
section assumed to be noise (usually, beginning of utterance).

For the above mentioned problems, J.C.Segura et al proposed
a Gaussian mixture model(GMM) based speech estimation method[6].

It estimates the expectation of the mismatch factor between clean
speech and noisy speech at each frame by using GMM of clean
speech and mean vector of noise, and showed the significant im-
provements in recognition accuracy. However, the Segura’s method
considered only the additive noise environments and it did not con-
sider about the channel noise problem such as an acoustic transfer
function, a microphone characteristic and so on. For example, in
car speech recognition with a distant(hands-free) microphone, it
is necessary to cope with not only the additive noise but also the
acoustic transfer function(channel noise). From this viewpoint, in
this study, we propose a channel noise estimation method based
on an EM algorithm, in the same spirit of CDCN[7] and VTS[8]
method. Furthermore, we estimate the speech signal more accu-
rately by using a speech GMM and a silence GMM instead of the
GMM trained without speech/silence discrimination, because the
differences of the feature parameters are large between speech sec-
tions and silence sections. By using the proposed additive and
channel noise estimation method, the speech signal corrupted by
additive and channel noise is recognized accurately.

Our proposed method has been evaluated on the AURORA3
tasks[9]. In the evaluation results, the proposed method showed
the significant improvement in the high-mismatched condition test
of AURORA3 tasks.

2. GMM BASED SPEECH ESTIMATION
2.1. Signal model
At the ith frame, the logarithmic output energy of Mel filter bank
of observed noisy speech is represented as follows[6]:

X(i) = log [exp(S(i)) + exp(N(i))]

= S(i) + log [1 + exp(N(i) − S(i))]

= S(i) + G(i) (1)

G(i) = log [1 + exp(N(i) − S(i))] (2)

where X(i), S(i) and N(i) denote the vectors which have loga-
rithmic output energy of Mel filter bank of observed noisy speech,
clean speech and noise, respectively.

In Eq.(1), G(i) is equivalent to the mismatch factor between
X(i) and S(i).

2.2. GMM based mismatch factor estimation
At first, it is supposed that S(i) can be modeled by GMM with K
mixture distributions as follows:
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p(S(i)) =

KX
k=1

Pkpk (S(i)|µS,k,ΣS,k) (3)

pk (S(i)|µS,k, ΣS,k) = N (S(i), µS,k,ΣS,k) (4)

where p(S(i)) denotes the output probability of S(i), and Pk, µS,k

and ΣS,k denote the mixture weight, mean vector and diagonal
covariance matrix of the kth Gaussian distribution, respectively.

Next, it is supposed that X(i) can be modeled by GMM with
K mixture distributions as well as S(i) as follows:

p(X(i)) =

KX
k=1

Pkpk (X(i)|µX,k,ΣX,k) . (5)

Here, in most case, the GMM of X(i) cannot be given as a
prior information. However, when GMM of S(i) is given, GMM
of X(i) can be obtained approximately by using log-add compen-
sation method[2] in the following way.

Let µN denotes the mean vector of N(i) which is estimated
using the first 10 frames of the observed noisy speech X(i). Then
the mean vector of X(i) at the kth Gaussian distribution is esti-
mated as follows based on Eq.(1) and (2).

µX,k � µS,k + log [1 + exp(µN − µS,k)]

= µS,k + µG,k (6)

On the other hand, the covariance matrix of X(i) is not mod-
ified, because the estimation accuracy of the covariance matrix
of N(i) estimated from the first 10 frames of the observed noisy
speech X(i) is very poor. Therefore, the covariance matrix ΣS,k

is used as the covariance matrix ΣX,k as shown in Eq.(7).

ΣX,k � ΣS,k (7)

In Eq.(6), µG,k corresponds to the mean vector of the mis-
match factor at kth Gaussian distribution. Therefore, the expecta-
tion of G(i) is estimated as weighted average of µG,k by using a
posterior probability Pi,k as follows[6]:

Ĝ(i) =

KX
k=1

Pi,kµG,k (8)

Pi,k =
Pkpk (X(i)|µX,k,ΣX,k)PK

k′=1 Pk′pk′ (X(i)|µX,k′ ,ΣX,k′)
(9)

From the procedure described above, the clean speech Ŝ(i) is
estimated by subtracting Ĝ(i) from X(i) as follows[6]:

Ŝ(i) = X(i) − Ĝ(i). (10)

3. SPEECH ESTIMATION IN ADDITIVE AND CHANNEL
NOISE ENVIRONMENT

3.1. Signal model with additive and channel noise
In the GMM based speech estimation method described in Sec.2,
the signal model represented by Eq.(1) is constructed under the
assumption that the additive noise exists alone. However, in car
speech recognition with distant(hands-free) microphone, it is nec-
essary to cope with not only the additive noise but also the acoustic
transfer function(channel noise).

Let H denotes the mean vector of channel noise, the loga-
rithmic output energy of Mel filter bank of the observed signal in
additive and channel noise environment is represented as follows:

XH(i) = log [exp(H) (exp(S(i)) + exp(N(i)))]

= S(i) + G(i) + H

= X(i) + H (11)

where XH(i) denotes the observed signal with channel noise and
H is assumed to be a time constant parameter.

By using above signal model, the GMM of XH(i) can be rep-
resented by

p(XH(i)) =

KX
k=1

Pkpk(XH(i)|µXH ,k,ΣXH ,k). (12)

Since H is a time constant parameter, the mean vector of H
can be represented as µH = H. Furthermore, µH is assumed to be
a common parameter in each Gaussian distribution of the GMM of
XH(i). From these assumptions, in kth Gaussian distribution, the
mean vector of XH(i) is represented by

µXH ,k = µS,k + µG,k + µH

= µX,k + µH . (13)

On the other hand, the diagonal covariance matrix of XH(i)
is represented as follows:

ΣXH ,k = E
h`

XH(i) − µXH ,k

´ `
XH(i) − µXH ,k

´T i
= E

ˆ`
X(i) + H − µX,k − µH

´
× `X(i) + H − µX,k − µH

´T i
, (14)

finally, from the assumption of µH = H, ΣXH ,k can be repre-
sented as

ΣXH ,k = E
h`

X(i) − µX,k

´ `
X(i) − µX,k

´T i
= ΣX,k (= ΣS,k). (15)

3.2. Discrimination of speech section and silence section
In Sec.2.2, the mismatch factor µG,k is estimated by using the
GMM which is trained without discrimination of speech sections
and silence sections in training materials. However, it is necessary
to estimate the mismatch factor by using the speech GMM and
the silence GMM which are both trained after discrimination of
speech sections and silence sections in training materials, because
the differences of the feature parameters are large between speech
sections and silence sections. Therefore, in this study, we propose
a mismatch factor estimation method using the speech GMM and
the silence GMM.

At first, we trained the speech GMM and the silence GMM
by using clean speech training materials and composed the GMM
for XH(i) by log-add compensation method[2] using the speech
GMM and the silence GMM as follows:.

p(s)(XH(i)) =

KX
k=1

P
(s)
k pk

“
XH(i)|µ(s)

XH ,k,Σ
(s)
XH ,k

”
(16)

where if s = 0, the parameters of GMM are composed using
the silence GMM. Otherwise, they are composed using the speech
GMM.

By using Eq.(13) and Eq.(15), the parameters of each com-
posed GMM are represented as follows:

µ
(s)
XH ,k = µ

(s)
S,k + µ

(s)
G,k + µH

= µ
(s)
X,k + µH (17)
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Σ
(s)
XH ,k = Σ

(s)
X,k

“
= Σ

(s)
S,k

”
(18)

where µH is assumed to be a common parameter to two types of
composed GMMs.

3.3. Channel noise estimation based on the EM algorithm
In Sec.3.1, the parameter µH is introduced. However, µH is a
prior unknown parameter, when XH(i) is observed. To solve this
problem, we estimated the µH by maximizing the GMMs with
likelihood of XH(i) based on an EM algorithm.

When the incomplete data(observable data) x = (XH) and
the unobservable data y are given, the complete data of the EM
algorithm consists of z = (x,y). Here, the model parameters
consist of λ = (P, µX ,ΣX , µH).

XH = (XH(0), . . . ,XH(i), . . . ,XH(N − 1)) (19)

P =
“
P

(0)
1 , . . . , P

(0)
k , . . . , P

(0)
K ,

P
(1)
1 , . . . , P

(1)
k , . . . , P

(1)
K

”
(20)

µX =
“
µ

(0)
X,1, . . . , µ

(0)
X,k, . . . , µ

(0)
X,K ,

µ
(1)
X,1, . . . , µ

(1)
X,k, . . . , µ

(1)
X,K

”
(21)

ΣX =
“
Σ

(0)
X,1, . . . ,Σ

(0)
X,k, . . . ,Σ

(0)
X,K ,

Σ
(1)
X,1, . . . ,Σ

(1)
X,k, . . . ,Σ

(1)
X,K

”
(22)

where N is the number of frame.
Here, the mean vector µ

(s)
XH ,k and the diagonal covariance ma-

trix Σ
(s)
XH ,k of GMMs for XH(i) are given by Eq.(17) and Eq.(18).

In Eq.(17) and Eq.(18), µ
(s)
X,k and Σ

(s)
X,k which are given by Eq.(6)

and Eq.(7) are the prior known parameters to the EM algorithm
based estimation. Furthermore, the mixture weight P

(s)
k is also

a prior known parameter. From these facts, the unknown model
parameter to the EM algorithm based estimation is only µH .

If complete data and incomplete data are defined, the expecta-
tion of auxiliary function Q (x, µH , µ̂H) is given as follows:

Q (x, µH , µ̂H) =

Z
log p (x,y|λ) p

“
y|x, λ̂

”
dy (23)

where µ̂H is the estimate of µH .
Finally, µ̂H is estimated as the parameter which maximizes the

above auxiliary function with iteration of the E-step(expectation)
and the M-step(maximization) described bellow.

(E-step)
At first, by using the estimate µ̂

(l)
H at the lth iteration, the

speech GMM and the silence GMM defined in Eq.(16) are com-
posed. Then, the speech sections and the silence sections of the
observed signal are discriminated by comparing the output proba-
bility from each composed GMM as follows:

id(i, l) =

j
0 if p(0)(XH(i)) > p(1)(XH(i))

1 if p(0)(XH(i)) ≤ p(1)(XH(i))
(24)

where if id(i, l) = 0, the ith frame is identified as the silence
section. Otherwise, it is identified as the speech section.

Furthermore, to cope with time varying noise, the noise mean
vector µN is updated as follows:

µN (i) =

j
ρµN (i − 1) + (1 − ρ)XH(i) if id(i, l) = 0
µN (i − 1) if id(i, l) = 1

(25)

where ρ was set to 0.97 in this study. The initial value µN (0) is
given by

µN (0) =
1

10

9X
i=0

XH(i). (26)

Finally, the expectation of auxiliary function Q (x, µH , µ̂H)
is given as follows:

Q
“
x, µH , µ̂

(l)
H

”
=

N−1X
i

KX
k

P
(l),(id(i,l))
i,k

×
“
log P

(id(i,l))
k + log pk

“
XH(i)|µ(id(i,l))

X,k , Σ
(id(i,l))
X,k , µH

””
(27)

P
(l),(id(i,l))
i,k =

P
(id(i,l))
k pk

“
XH(i)|µ(id(i,l))

X,k , Σ
(id(i,l))
X,k , µ̂

(l)
H

”
PK

k′=1 P
(id(i,l))
k′ pk′

“
XH(i)|µ(id(i,l))

X,k′ , Σ
(id(i,l))
X,k′ , µ̂

(l)
H

”
(28)

pk

“
XH(i)|µ(id(i,l))

X,k , Σ
(id(i,l))
X,k , µH

”
=

N
“
XH(i), µ

(id(i,l))
X,k + µH ,Σ

(id(i,l))
X,k

”
. (29)

(M-step)

By solving ∂Q
“
x, µH , µ̂

(l)
H

”
/∂µH = 0 , µH is obtained as

the parameter which maximizes the expectation of Q
“
x, µH , µ̂

(l)
H

”
.

∂Q
“
x, µH , µ̂

(l)
H

”
∂µH

=

N−1X
i

KX
k

P
(l),(id(i,l))
i,k

×
∂ log pk

“
XH(i)|µ(id(i,l))

X,k , Σ
(id(i,l))
X,k , µH

”
∂µH

= 0 (30)

µH =

 
N−1X

i

KX
k

P
(l),(id(i,l))
i,k

“
Σ

(id(i,l))
X,k

”−1
!−1

×
N−1X

i

KX
k

P
(l),(id(i,l))
i,k

“
Σ

(id(i,l))
X,k

”−1

×
“
XH(i) − µ

(id(i,l))
X,k

”
(31)

By iterating the E-step and the M-step until convergence, the
optimum estimation µ̂H is obtained. The convergence condition

in this study is
˛̨
˛Q “

x, µH , µ̂
(l)
H

”
− Q

“
x, µH , µ̂

(l−1)
H

”˛̨
˛ ≤ 0.001

and the initial value is µ̂
(0)
H = 0.

3.4. Estimation of S(i)
In this section, the estimation method of S(i) by using the speech
GMM and the silence GMM is described.

At first, the speech sections and the silence sections of the ob-
served signal is discriminated based on Eq.(24) by using the com-
posed GMMs with the estimated µ̂H . Then, by using the discrim-
ination results, the mismatch factor G(i) is estimated as follows:

Ĝ(i) =
KX

k=1

P
(id(i))
i,k µ

(id(i))
G,k (32)

P
(id(i))
i,k =

P
(id(i))
k pk

“
XH(i)|µ(id(i))

X,k + µ̂H ,Σ
(id(i))
X,k

”
PK

k′=1 P
(id(i))
k′ pk′

“
XH(i)|µ(id(i))

X,k′ + µ̂H ,Σ
(id(i))
X,k′

”
(33)
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where id(i) is discrimination result.
Finally, the estimate of S(i) is given by

Ŝ(i) = XH(i) − Ĝ(i) − µ̂H . (34)

4. EXPERIMENTS

4.1. Experimental set up
The proposed method has been evaluated on the AURORA3 database
which is provided by ELRA[9]. The AURORA3 database con-
tains the speech data(digit speech) spoken in 4 European languages
which are Danish, Finnish, German and Spanish. The speech
data of the AURORA3 is recorded in the several real driving car
environments with a close-talking(CT) microphone and a hands-
free(HF) microphone. The driving conditions are quiet(idling),
low speed and high speed condition.

The 3 test conditions are defined in the AURORA3 database;
namely, well-matched(WM), moderate-mismatched(MM) and high-
mismatched(HM) condition. Table 1 and 2 show the speech data
used for training and testing(© indicates the used data).

Table 1. The used training data
Condition WM MM HM
Microphone CT HF CT HF CT HF
Quiet © © © ©
Low speed © © © ©
High speed © © ©

Table 2. The used test data
Condition WM MM HM
Microphone CT HF CT HF CT HF
Quiet © ©
Low speed © © ©
High speed © © © ©

The acoustic features used in this evaluations are composed
of 39 parameters with 13 MFCCs(with zero-th MFCC) and their
first and second order derivatives as shown in Table3. The zero-th
MFCC was used for energy coefficient instead of standard Log-
energy. The AURORA3 standard whole word HMMs(16states, 3
mixture distributions per state) are used for all the evaluations.

Table 3. Feature extraction conditions
Pre-emphasis 1 − 0.97z−1

Feature parameter 13th order MFCC(with zero-th) + ∆ + ∆∆
Frame length 25ms
Frame shift 10ms
Window type Hamming window

The clean speech GMMs are trained by using the training ma-
terials which are recorded in quiet condition with a close-talking
microphone. The number of mixture distribution of the each GMM
is 256.

4.2. Experimental results
In this study, we evaluated the following 4 methods on the HM
condition of AURORA3 database, because the HM condition has
both additive noise and channel condition mismatch between train-
ing data and test data.

Method 1 : Baseline at ICSLP2002[10]

Method 2 : Spectral subtraction + Cepstral mean subtraction

Method 3 : Segura’s method + Cepstral mean subtraction

Method 4 : Proposed method

Table 4 and 5 show the recognition results by each method.
Compared with the Method 3, the proposed method(Method 4)
showed about 4.3% of word error rate improvement and about
9.7% of relative improvement in average. These results indicate
that the proposed EM algorithm based channel noise estimation
worked effectively, comparing with the conventionally used cep-
stral mean subtraction.

However, the proposed method assumed that the length of the
impulse response of the channel noise is shorter than the analysis
window size. If it is longer than the analysis window size such
as a room reverberation, the performance of the proposed method
will degrade. To solve this problem, the channel noise estimation
method to be robust for the channel noise with long impulse re-
sponse is required in future work.

Table 4. Word error rate(%)
Language Danish Finnish German Spanish Average
Method 1 60.63 59.47 26.83 48.45 48.85
Method 2 59.01 43.92 20.44 37.68 40.26
Method 3 38.75 15.48 13.32 23.55 22.78
Method 4 30.80 13.71 9.02 20.24 18.44

Table 5. Relative improvement(%)
Language Danish Finnish German Spanish Average
Method 1 0.00 0.00 0.00 0.00 0.00
Method 2 2.67 26.15 23.82 22.23 18.72
Method 3 36.09 73.97 50.35 51.39 52.95
Method 4 49.20 76.95 66.38 58.22 62.69

5. CONCLUSIONS
In this paper, we proposed a robust speech recognition method in
additive and channel noise environments by using GMM and EM
Algorithm. In the evaluation on the high-mismatched condition
test of AURORA3, our method showed the significant improve-
ment in word error rate and relative improvement. In future, we
are planning to cope with the non-stationary additive noise and
more accurate channel noise estimation method.
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