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ABSTRACT

An approach to the recognition of regional language varieties is
presented. The algorithm is tested on utterances of 3 to 6 sec-
onds duration taken from large speech databases (SpeechDat) of
Austrian and German German. The features are based only on
the prosody of the speech and include parameters derived from the
Fujisaki model and statistics of the fundamental frequency. Clas-
sification is performed using a multi layer perceptron and yielded
a rate of 64% correct identification of the regional variety.

Those results are then further evaluated for the use of a re-
gional variety recognizer as a front-end of an automatic speech
recognizer for different regional varieties. In case there is no a pri-
ori information of the distribution of the regional varieties spoken
by the users, this approach yields a considerable improvement in
the robustness of the speech recognition rates.

1. INTRODUCTION

German is a pluricentric language, which means, that it is realized
in more than one country. The realization of such a language in
one of these countries is called national variety, for German the
major varieties are German, Swiss and Austrian German. The dif-
ferences between the German spoken in Austria and Germany can
be compared to the differences between British English and Amer-
ican English. It is stated [1, 2] that every national variety must
have the status of an official administrative and public language
and hence evolves a certain linguistic and communicative inde-
pendence. Since the work is also applicable to regional varieties
of a language, we will use that term in the rest of the paper.

The variety differences cause difficulties for Automatic
Speech Recognition (ASR) systems and result in higher word er-
ror rates (WER) if the variety of the training is not equal with the
variety of the test set. A front end, prior to the phone recognizer,
can recognize the regional variety of the speaker, cf. fig. 1. Us-
ing this information for each German variant, a different acoustic
model (AMO) can be used for recognition. Alternative approaches
would either be to include all varieties for the training of the AMO
or to do parallel recognition with AMOs, trained for each variety,
and pick the most likely result [3].

First results of recognition of German varieties using prosodic
features with a small database were very promising. Recognition
rates of German and Austrian German were up to 72% [4]. Con-
sidering recent language identification (LID) literature [5] this is
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comparable to results for identification of completely different lan-
guages. Later a larger database became available so new experi-
ments were performed to verify those experiments and put them
on a statistically reliable foundation [6]. The paper is organized
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Fig. 1. Block diagram for regional variety recognition (RVR).

as follows. After a short description of the speech data in chapter
2, the features used for the regional variety recognition (RVR) are
introduced in chapter 3. Chapter 4 describes the feature selection,
classification methods and RVR results. Then chapter 5 discusses
the relevance of those results for ASR of pluricentric languages.
The paper finishes with a conclusion in Chapter 6.

2. THE SPEECH DATA

Training and test material is taken from the German SpeechDat(II)
FDB 4000 [7] and the Austrian SpeechDat-AT FDB-1000 tele-
phone speech databases [8]. The format of the speech files is A-
Law, 8-bit, 8 kHz. In the following we describe the subsets of
the databases used for both the training and testing of AMOs for
speech recognition and for the recognition of regional varieties.

2.1. Speech data for the training of the acoustic models

Both subsets of the databases contain 980 speakers. 90% are train-
ing data, test data are taken from the remaining 10%. The splitting
of the corpus was carried out in three different ways so that there
are three different training sets and test sets. The results are aver-
age values over the three splits. The total number of speech files in
each database is 42268. The databases are subdivided into the fol-
lowing tasks: yes/no, typical words used in command recognition
tasks, connected digits, natural numbers, money amounts, dates,
times, directory assistence, spelling, phonetically rich words, pho-
netically rich sentences. For each of these tasks, either a bigram
based language model was trained (e.g., for phonetically rich sen-
tences) or a regular grammar was written (e.g., for digits). The
vocubulary size for the Austrian database is 17965 and 19664 for
the German database. The demographic distribution of the subsets
of the databases corresponds to the SpeechDat criteria.
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Fig. 2. Block diagram for feature extraction.

2.2. Speech data for the training of variety recognition

As the RVR algorithm only deals with prosody we needed utter-
ances with a certain minimum amount of time in order to cap-
ture the suprasegmental features. Therefore, only phonetically rich
sentences were used for both training and testing. We selected
1200 sentences from the Austrian database and 1200 sentences
from the German database. The length of the sentences was be-
tween 3 and 6 seconds only, thus reflecting the requirement for a
fast reaction time of the RVR front-end.

Note that SpeechDat databases primarily contain read speech.
Therefore, we did not expect as significant differences between
the two national varieties as we might obtain from spontaneous or
colloquial speech.

3. FEATURE EXTRACTION

Three steps lead to the decision on the language variety of the
given speech sample. As shown in figure 2, these are the extraction
of the fundamental frequency contour, feature extraction and clas-
sification. The fundamental frequency (F0) of the utterance is the
only prosodic parameter used for the classification of the regional
variety of the language. F0 is calculated using YIN, a time-domain
algorithm based on the evaluation of the average magnitude differ-
ence function. YIN was proposed by de Cheveigné [9] and it was
adapted for the automatic regional variant recognizer. The param-
eters used by the algorithm are calibrated to minimize the number
of outliers of the F0 contour for the data from SpeechDat. For
the parameterization steps the overall form of the contour is more
important than the exact values of F0. With regard to this a post-
processing stage to YIN is implemented to remove all the outliers
by filtering the contour as well as by an octave error correction
mechanism.

The calculated contour is then parameterized and represented
as a set of 26 features for an utterance. Three main categories of
features are calculated:

• Fujisaki features

• Mean log intervals

• Percentiles and range

The Fujisaki model described in figure 3 allows a quantitative anal-
ysis of certain linguistic features [10, 11]. Originally developed
for the generation of F0 contours for synthesized speech. In this
work it is used to analyze the utterance, the calculated Fujisaki
parameters are then used for classification. Fujisaki models a fun-
damental frequency contour as a linear superposition of an offset
frequency, a local accent component and a global phrase compo-
nent thus providing linguistically meaningful features for further
processing. Parameters of the second order linear system repre-
senting duration and amplitude of the components are used to cal-
culate 8 Fujisaki features, 3 based on the phrase and 5 based on the
accent components. These are:

• Mean time difference between phrase control impulses
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Fig. 3. Fujisaki Pitch Contour Parameterization. The parameter-
ized pitch contour is a superposition of a minimum frequency, a
local accent compontent and a global phrase component.

• Mean amplitude of phrase components

• Mean difference amplitude between consecutive phrase
components

• Mean amplitude of accent components

• Mean difference amplitude of accent components

• Mean difference between two consecutive accent starts

• Mean duration of accent

• Mean times between two consecutive accents

The second block of six features is the representation of the mean
log intervals. The logarithm of a continuously approximated F0
contour and the intervals between adjacent local minima and max-
ima is calculated. This information is mapped in the form of a
histogram thus representing the frequency of occurrence of quanti-
tatively different frequency jumps within the utterance. The whole
F0 range within an utterance is divided in six equal parts. The fre-
quency jumps falling within a single class are normalized by the
overall number of jumps within an utterance.

The last twelve features are the representation of elementary
statistical properties of the calculated F0 values. Ten features rep-
resent the percentiles of the contour and two range features are
introduced. P10, P25, P75 and P90 of the F0 contour are calcu-
lated. To avoid the impact of the generally decreasing value of F0
towards the end of the sentence the same percentiles are calculated
for the contour with a linear trend removed from it. Additionally,
P75 and P90 for the differential value of the contour are calcu-
lated. Last two features are the range of F0 (F0max - F0min) and
the minimal value of F0 observed in the entire utterance, relative
to the median value of the fundamental frequency contour.

4. MACHINE LEARNING APPROACH

The principal component analysis of the parametrized data (fea-
tures) shows the difficulty of this classification task since the
classes are strongly overlapping.

We used two different classification approaches: Feature se-
lection combined with k-NN and Neural Networks

4.1. Feature Selection with k-NN classifier

In our classification problem the relevant features are unknown a
priori. Thus, many features are derived and those which do not
contribute or even degrade the classification performance are re-
moved from the set of extracted features during classification. The
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sequential forward floating search (SFFS) algorithm [12, 13] is
employed since a good tradeoff between computational demands
and obtained classification rate is achieved compared to optimal
feature selection methods. The SFFS method includes a feature
to the current feature subset which maximize the performance of
the 5-NN classifier. Afterwards, conditional exclusions of the pre-
viously updated subset take place. If no feature can be excluded
anymore, the algorithm proceeds again with adding features. This
floating behavior allows to correct wrong decisions made in previ-
ous steps of the search. The experiments are based on 2400 sam-
ples uniformly distributed between both classes, German and Aus-
trian. A five-fold cross-validation classification performance of
61.25% is obtained for a feature subset of size 6.

4.2. Neural Network Classification

Different neural network architectures are trained for 16 different
subclasses of features. The full set of 26 features does not guaran-
tee the best classification results. Experiments showed that the full
set of the statistical parameters group combined with the Fujisaki
parameters provides the best basis for the classification. This com-
bination of 16 parameters was tested on a number of different neu-
ral networks varying the number of neurons in the hidden layer of
a multilayer feed-forward network between between 30 and 100.

The data set consisting of 1200 German and 1200 Austrian
speech files (120 speakers each) is chosen to determine the aver-
age recognition rate. Using 80% for training and 20% for testing,
the final recognition rate is obtained averaging the results of three
cross validation steps. A recognition rate of 64% is achieved using
a three layered NN with 40 neurons in the hidden layer. The neu-
ral networks output is trained to reach the values 0 and 1 for the
German and Austrian variant, respectively. The optimal decision
boundary in this case was 0.51, based on experimental results.

5. EVALUATION

The recognition rate of 64% of the RVR algorithm is relatively
low. In order to judge its efficiency for certain scenarios, ASR
recognition rates (respectively word error rates (WER)) have to
be compared using RVR with two AMOs on the one hand and
a single AMO without pre-processing variety recognition on the
other hand. The recognition rates for single AMOs for speakers
from Germany and Austria were investigated in [14]. Training and
testing was carried out with data introduced in section 2.1. All
AMOs were trained and tested with the Hidden Markov Toolkit
(HTK) [15]. The results are laid down in table 1.

German AMO Austrian AMO
German test speakers 12.09% 21.78%
Austrian test speakers 16.32% 9.89%

Table 1. Word error rates for German and Austrian test speakers
using AMOs trained with speakers from Germany and Austria

5.1. Using a single AMO

If a single AMO is used by different groups of speakers the word
recognition rate (WRR) can be estimated by averaging the WRRs
for each group of test speakers using a common AMO. Each of
the WRRs has to be weighted with the probability that a speaker is

from a certain area. This probability can be considered the relative
frequency of the speakers of that region. The WER then amounts
to WER = 1−WRR. With equation (1) the estimates for WER us-
ing any desired number of AMOs and speaker groups can be com-
puted. p(spki) stands for the probability that a speaker of group i
uses the speech recognizer and WRR(AMO,spki) means the word
recognition rate that was scored for a particular AMO for a corre-
sponding group of speakers.

WER(ONE AMO) = 1−
n

∑
i=1

p(spki) ·WRR(AMO,spki) (1)

Figure 4 illustrates the case for the two groups of speakers (Ger-
mans, Austrians) using the speech recognizer trained with the Ger-
man SpeechDat database.

p(Aut_users)

p(Ger_users)

WRR(FDB_GER,
Aut_users)

WRR(FDB_GER,
Ger_users)

+

Fig. 4. Block diagram for estimation of the percentage of correctly
recognized words for two groups of test speakers (Austrians and
Germans) using the German AMO.

5.2. Using the RVR algorithm

For the RVR algorithm the WRRs for the different groups of
speakers are weighted too. Then, however, for each group of
speakers the probability for assigning the speakers to a certain
AMO is multiplied with the WRR for this group of speakers us-
ing the AMO the speaker was assigned to. With equation (2) the
WER can be estimated, p(RVR(AMOj,spki)) is the probability
that a speaker from group i is assigned to AMOj. Note that the
probability to recognize the speaker’s origin correctly is 0.64 and
hence an incorrect assignment is expected to occur in 36% of the
cases. There is no distinction between variety recognition rates for
German speakers and Austrian speakers. Figure 5 shows a block
diagram for estimating the WRR for the RVR algorithm and two
AMOs (trained with German and Austrian speakers, respectively)
and two groups of users (Germans and Austrians).

WER(RVR) = 1−
n

∑
i=1

m

∑
j=1

p(spki) · p(RVR(AMOj,spki))·

·WRR(AMOj,spki) (2)

5.3. Results and discussions

The best method to decide whether to choose a single AMO or
the RVR algorithm is to consider the WERs as a function of the
distribution of speakers. These can be determined by solving (1)
and (2) for p(spki) assuming that i = 2 and p(spk1) = p(spkger)
whereas p(spk2) = p(spkaut) = 1 − p(spkger). The values for
p(RVR(AMOj,spki)) and WRR(AMOj,spki) are known. The
three functions are illustrated in figure 6. It can be seen clearly
that the RVR algorithm has the flattest slope, i.e. the WERs vary
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Fig. 5. Block diagram for the estimation of the percentage of cor-
rectly recognized words for two groups of test speakers (Austrians
and Germans) and two AMOs (trained with Germans and Austri-
ans respectively) using the RVR algorithm.

less than for single AMOs. The WERs for the use of the RVR algo-
rithm vary between 12.20% (100% Austrian speakers) and 15.54%
(100% German speakers). For single AMOs, the maxima of the
WERs are known, namely 12.09% and 16.32% using the German
AMO and 9.89% and 21.78% for using the Austrian AMO. Natu-
rally the RVR algorithm which is the method corresponding to the
flattest slope is the most appropriate one. In particular, the maxi-
mal WER for the RVR algorithm is less than the maximal WER of
either the German or the Austrian AMO.
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Fig. 6. Word error rates for the RVR algorithm (solid line), the
German AMO (dotted, · · · ), and the Austrian AMO (dashed, - - -)
as a function of the percentage of German German speakers.

6. CONCLUSION

We presented a machine learning approach for regional variety
recognition. The work was carried out using SpeechDat-AT and
SpeechDat-DE as a source. Though the variety recognition rate of
64% is relatively low, it is still comparable to other results for the
identification of German versus English [5]. Even better results
could be expected for utterances with durations longer than 6 sec-
onds. It has been shown that for speech recognition tasks where
the regional variety of the speaker is not known a priori, even this
result improves the robustness of the overall ASR system, consid-
erably.

Due to the large database, the current result can be seen as a
solid baseline, which shows, that there are significant differences
in the prosody of German and Austrian. Further research will be
necessary to improve the recognition results and to extend these
methods to other pluricentric languages.
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