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ABSTRACT

In this paper, the states in the speech production process are
defined by a number of categorical articulatory features. We de-
scribe a detector that outputs a stream (sequence of classes) for
each articulatory feature given the Mel frequency cepstral coef-
ficient (MFCC) representation of the input speech. The detector
consists of a bank of recurrent neural network (RNN) classifiers,
a variable depth lattice generator and Viterbi decoder. A bank of
classifiers has been previously used for articulatory feature detec-
tion by many researchers. We extend their work first by creating
variable depth lattices for each feature and then by combining them
into product lattices for rescoring using the Viterbi algorithm. Dur-
ing the rescoring we incorporate language and duration constraints
along with the posterior probabilities of classes provided by the
RNN classifiers. We present our results for the place and manner
features using TIMIT data, and compare the results to a baseline
system. We report performance improvements both at the frame
and segment levels.

1. INTRODUCTION

The linear symbolic representation of speech at the lowest sym-
bolic level using phonemes is very common in state-of-the-art
speech recognizers. This is known as the “beads-on-a-string”
representation. The drawbacks of this representation have been
reported in [1-3]. A natural extension of this representation
is “beads-on-multiple-strings” which suggests a nonlinear multi-
dimensional symbolic representation. In the latter, the first issue
is the decision on the nature of features (“strings”) and the set of
classes (“beads”) for each feature. The second issue is the accu-
rate detection of the classes along each dimension. Many different
symbolic feature representations and ways of detecting the feature
classes have been reported in [4-14]. According to the “beads-on-
multiple-strings” approach, a segment of speech is classified into
a number of broad classes in multiple dimensions. We associate
the dimensions with articulatory features and the classes with their
values. In doing so, a representation of the speech frame, or seg-
ment, is obtained as an articulatory feature vector (or state). In
turn, a word can be represented by a sequence of feature vectors.
Our goal is the accurate detection of the feature streams from the
input speech for subsequent word recognition.

The speech recognition framework on which our current work
is based is in strong agreement with the detection-based framework
for speech recognition and understanding presented in [17]. Also,
the lattice rescoring strongly overlaps with the notion of event lat-
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Fig. 1. Speech recognition framework

tices advocated in [18, 19]. The framework is illustrated in Figure
1. It points to four research areas. These are (i) acoustic feature
representation and extraction, (ii) state specification and detection,
(iii) lexical representation and phonology and (iv) lexicon creation
and parsing. We currently work on the state specification and de-
tection problem.

‘We propose a detector which is a bank of recurrent neural net-
works (RNNs) followed by a product lattice rescoring unit. The
outputs of RNNs are the posterior probabilities of classes for each
articulatory feature given the acoustic representation in MFCCs.
RNNs have been extensively used for the articulatory feature de-
tection in [7, 14]. We extend their work by generating lattices of
feature classes for each feature stream. These lattices can be either
independently or jointly rescored for better performance. The pos-
terior probabilities along with language and duration constraints
within and across the feature streams are used during rescoring.
The final output of the system is a sequence of classes at frame
level for each feature stream (tagged with posterior probabilities
as indicators of the reliability of the information/evidence passed
to higher levels). Articulatory events, or segments of speech, are
created by concatenating the frame level repeating classes. We
present results that show improved performance.

The paper is organized as follows. In Section 2, we present
the framework for our ongoing research toward a system that uses
articulatory features in speech recognition. We discuss the articu-
latory feature representation that we are currently considering and
an implementation of a detector for it. Experimental results are
presented in Section 3. Conclusions are made in the final section.
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Table 1. Feature system based on articulatory phonetics

Feature Categories
Phonation +voice, -voice
Manner approximant, fricative, nasal, stop, vowel
Place labial, labiodental, dental, alveolar, velar,
glottal, high, mid, low
FrontBack front, back
Rounding +round, -round

2. ARTICULATORY FEATURE BASED APPROACH

2.1. Recognition Framework

In this section we describe a framework for our ongoing research
toward a speech recognition system based on articulatory features.
The framework is illustrated in Figure 1. In the standard top-
down approach, the lexicon is accessed to hypothesize words with
a number of different pronunciations; each word is a sequence of
selected sub-lexical units. Then the sub-lexical units are associated
with their respective “states” (or acoustic models). A score is ob-
tained depending on the degree of match between the acoustic ob-
servations and the acoustic models in that state. In the bottom-up
approach, the input speech is segmented into a sequence of “states”
(or constituents) and then combined into words using phonotactics
directly on the states or on another (optional) intermediate repre-
sentation (like phonemes or syllables). A hybrid approach is also
possible; one can perform a top-down inference with constraints
induced in a bottom-up manner. That is, the speech states de-
tected in a bottom-up manner can guide the top-down search for
words. In this paper, we focus on the state specification and detec-
tion problem illustrated in Figure 1.

2.2. A Multi-Valued Multi-Stream State Representation

We define the state of speech sound production process by using
categorical features as

st = [f1fo fL] (1)

where s; is the state at the ¢-th frame, f; is the i-th feature, with M;
categories, and L is the number of features. We are considering an
articulatory feature representation for Equation (1).

The dimensions and their categorical values are determined
by articulatory phonetics (AP). In AP, we are mainly concerned
with how people make the speech sounds of language using human
vocal organs (or articulators). Some examples of the articulators
are vocal cords, velum, tongue, teeth and lips. Speech sounds can
be described in several dimensions; namely, phonation, manner of
articulation, place of articulation, front/back and rounding. The
speech sound phonation depends on the state of the vocal cords
and shape of the oral tract. It can be voiced,unvoiced or mixed.
The place of articulation is the place where the articulators ob-
struct the air stream. The manner of articulation refers to the way
the articulation is accomplished. For example, the velum couples
the nasal tract to the oral tract for nasal sounds. The speech sound
characteristics also strongly depend on the shape and the position
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Fig. 2. An implementation of the second stage in Figure 1.

of the tongue. The tongue can be raised, and moved forward and
backward, and can be made to touch a place in the oral tract or to
change the volume of the oral tract for creating different sounds.
Therefore, the shape and position of the tongue, and its place of
articulation can be used to categorize speech sounds. For example,
the consonants can be described by their place and manner of ar-
ticulation, and their phonation. On the other hand, the vowels can
be described by their height, backness and rounding. The rounding
feature describes whether the sounds are generated when the lips
are rounded or unrounded. In this paper, we use the feature system
shown in Table 1 [14].

2.3. Detector Implementation

In this section we describe the implementation of the speech pro-
duction state detector module shown in Figure 1. A more detailed
block diagram of the detector is exhibited in Figure 2. Recall that
the state was defined in terms of the articulatory features. The state
detector includes a bank of RNN classifiers, one for each feature.
We used the NICO toolkit to train RNNs [20, 21]. The choice
of RNNs is motivated by (i) their ability to implicitly incorporate
context in detection by recurrent connections, (ii) their decent per-
formance as demonstrated in [5, 14] and (iii) the fact that the out-
puts can be interpreated as the posterior probabilities of classes.
Although their training time is very slow as compared to hidden
markov models, our pilot experiments have shown that their train-
ing is very fast when compared to support vector training while
using all TIMIT data. The outputs of the RNNs are used to create
variable depth lattices. That is, for each feature a variable number
of class assignments with their scores are retained at each frame
depending on an empirically optimized threshold on the posterior
probabilities. To improve the performance of the feature detection
we rescore lattices using

o the posterior probabilities from the RNNs
e durational models
e n-gram feature models
Assuming that the features are independent, we rescore them
independently. However, this is not a realistic assumption, and we
might get some improvement by rescoring them jointly. We do

this by rescoring a cartesian product of the lattices (or product lat-
tice) taking into account the durational and language constraints on
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Fig. 3. A slice of the product lattice at a certain frame. Here,
the individual streams have 4 classes retained. The total
number of product states is 16. However, some of them are
restricted depending on the degree of asynchrony allowed.

product states. A time slice of the product lattice (of degree 2) is
illustrated in Figure 3 for the manner and place features. We have
the additional sil class for both streams. At each frame, the number
of possible product states is equal to the product of the number of
classes retained for each feature at that frame. However, one can
exclude certain product states by limiting the asynchrony between
the streams. For example, the sil class in one stream can only co-
occur with the sil class in another stream. In the figure, the states
that are not allowed to co-occur are illustrated by the dark circles.
A simple extension of the Viterbi algorithm for a single stream is
used to search for the best path through the product lattice, without
explicitly creating the product lattice. The posterior probability of
the product state is assumed to be the multiplication of the poste-
rior probabilities of the component states.

The output of the lattice rescoring is a sequence of classes at
a frame level for each stream. These frame level sequences are
then converted into segments by collapsing the sequence of identi-
cal classes. Both outputs are tagged with posterior probabilities to
indicate the confidence on the detected event for subsequent pro-
cessing.

3. EXPERIMENTS

3.1. Data

TIMIT data was used in all experiments. It is a very high quality
corpus labeled at phoneme and word levels. All but SA files were
used for training and testing. We reserved a randomly selected set
of 100 sentences out of 3696 training sentences as a validation set.
Experimental results were reported on the core test data containing
1344 sentences. The mapping from phonemes to features were
made using the table presented in [7]. The full set of the TIMIT
phonemes were used in the experiments.

Table 2. Baseline System Results
Manner | Place
15.5% | 28.4%
357% | 57.1%

Frame Error
Segment Error

Table 3. Independent lattice rescoring results
Manner | Place
15.0% | 27.5%
224% | 32.5%

Frame Error
Segment Error

3.2. Baseline System

The speech waveforms were parameterized using MFCCs. The
length of the analysis frame was set to 25ms. The analysis frames
were overlapped and shifted by 10ms. Each frame is represented
by 12 MFCCs and energy plus velocity and acceleration coeffi-
cients. A context of five frames centered at the current frame was
used. This amounts to a 195-dimensional input vector. For each
feature an RNN is trained with one hidden layer consisting of 200
hidden units with recurrent connections. The number of training
iterations was set to 60. We did not carry out any extensive opti-
mization of the learning parameters, architecture and context using
the validation data. So, we believe that there is still some room for
improvement by optimizing the RNN training. The 1-best outputs
were obtained by picking the maximum posterior probability at
the output of the RNNs for each feature. The standard NIST Sclite
scoring tool which counts insertions, deletions and substitutions is
used to compute the segment error. The baseline results are shown
in Table 2 for the manner and place features.

3.3. Independent Lattice Rescoring

For each feature a lattice with a varying depth was created by pos-
terior probability pruning. All outputs above a validation set opti-
mized threshold were retained (0.7-0.8). In cases where there were
no outputs above the threshold (relatively high entropy frames) all
the outputs were retained in the lattice. Each lattice was rescored
independently using their own bigram feature model (trained using
the sequence of classes in TIMIT training data) and gamma dis-
tributed duration model using the Viterbi algorithm. The weights
for the log-linear combination of the knowledge sources were opti-
mized using the validation set. The results are exhibited in Table 3.
For the manner feature, the error reduction is 3.2% relative at the
frame level and 37% at the segment level. For the place feature the
improvement is 3.2% relative at the frame level and 43% relative
at the segment level.

3.4. Product Lattice Rescoring

Here we combined the two lattices in Section 3.3 into a product lat-
tice and utilized bigram and durational constraints on the product
states for rescoring. In the product lattice, the states (or nodes) are
all the possible pairs of manner and place features allowed by the
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Table 4. Product lattice rescoring results.

Manner | Place
Frame Error 13.5% | 27.0%
Segment Error | 19.6% | 31.4%

asynchrony constraints as illustrated in Figure 3. The results are
shown in Table 4. The further improvement for the manner fea-
ture is 10.6% relative at the frame level and 12.5% relative at the
segment level. The respective further improvements for the place
feature are 2.2% and 3.4%, respectively.

4. CONCLUSIONS

We have presented some experiments towards parsing speech into
articulatory-feature based events. The speech-production state has
been categorized using a number of multi-valued articulatory fea-
tures. We have addressed the state detection problem and explored
some lattice rescoring methods to improve the performance of
the baseline detector. We have shown the impact of feature-level
language and duration constraints on the performance. We have
also shown that the lattice rescoring using inter-feature constraints
through a product lattice yields further improvement.
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